根据鸽笼原理,在p次后一定循环,一眼BSGS。
发现他给的函数是个一次函数,一次函数有什么性质呢?f(f(x))还是一次函数,这样就能做了。
首先我们暴力预处理出f(f(f(x)))......sqrt(p)层的f(x)。
然后预处理出前sqrt(p)迭代后的值。
我们可以用exgcd求出如果让f(x)=t,我们需要的x值。
然后我们枚举用多少层迭代sqrt(p)后的f(x)即可。
注意特判一下a==0的情况,因为exgcd无法处理有0的参数。
为什么跑得如此之慢?可能我需要一个unordered_map,然而C++11不能用......

代码:

 #include<cstdio>
#include<cmath>
#include<map>
typedef long long int lli;
using namespace std; lli mod; struct Poly {
lli k,b;
inline Poly inter(const Poly &t) {
return (Poly){t.k*k%mod,(t.b*k%mod+b)%mod};
}
inline lli ite(const lli &x) {
return ( k * x % mod + b ) % mod;
}
}now,trans,sqr; inline lli exgcd(lli a,lli b,lli &x,lli &y) {
if( !b ) {
x = , y = ;
return a;
}
lli ret = exgcd(b,a%b,y,x);
y -= ( a / b ) * x;
return ret;
} inline lli getx(const Poly &p,const lli &t) {
lli x,y,rit;
exgcd(p.k,mod,x,y);
rit = ( t - p.b + mod ) % mod , x = ( x % mod + mod ) % mod;
return x * rit % mod;
} inline lli bsgs(lli a,lli b,lli x,lli t) {
if( !a && !b ) return x == t ? : -;
map<lli,lli> mp;
int sq = ( (double) sqrt(mod) + 0.5 ) + ;
sqr = now = (Poly){,} , trans = (Poly){a,b};
for(int i=;i<=sq;i++) {
if( mp.find(x) == mp.end() ) mp[x] = i;
x = trans.ite(x);
}
for(int i=;i<=sq;i++) sqr = trans.inter(sqr);
for(int i=;i<=sq;i++) {
lli tx = getx(now,t);
if( mp.find(tx) != mp.end() ) return mp[tx] + i * sq;
now = sqr.inter(now);
}
return -;
} int main() {
static int T;
static lli a,b,x,t;
scanf("%d",&T);
while(T--) {
scanf("%lld%lld%lld%lld%lld",&mod,&a,&b,&x,&t);
printf("%lld\n",bsgs(a,b,x,t));
}
return ;
}

Bzoj3122:多项式BSGS的更多相关文章

  1. BSGS[bzoj2242][bzoj3122]

    数论题. 操作一:直接快速幂就好了. 操作二:我用了exgcd,shy和lyz都喜欢欧拉函数...QAQ最后这块还写错了. 对于ax+by=gcd(a,b)的形式,我们可以把他们变成y'x+p'y=1 ...

  2. P5277 【模板】多项式开根(加强版)(bsgs or Cipolla)

    题面 传送门 题解 首先你得会多项式开根->这里 其次你得会解形如 \[x^2\equiv a \pmod{p}\] 的方程 这里有两种方法,一个是\(bsgs\)(这里),还有一种是\(Cip ...

  3. 【BZOJ3122】随机数生成器(BSGS,数论)

    [BZOJ3122]随机数生成器(BSGS,数论) 题面 BZOJ 洛谷 题解 考虑一下递推式 发现一定可以写成一个 \(X_{i+1}=(X_1+c)*a^i-c\)的形式 直接暴力解一下 \(X_ ...

  4. 【BZOJ3122】[Sdoi2013]随机数生成器 BSGS+exgcd+特判

    [BZOJ3122][Sdoi2013]随机数生成器 Description Input 输入含有多组数据,第一行一个正整数T,表示这个测试点内的数据组数.   接下来T行,每行有五个整数p,a,b, ...

  5. 【bzoj3122】: [Sdoi2013]随机数生成器 数论-BSGS

    [bzoj3122]: [Sdoi2013]随机数生成器 当a>=2 化简得 然后 BSGS 求解 其他的特判 : 当 x=t  n=1 当 a=1  当 a=0 判断b==t /* http: ...

  6. 【BZOJ-3122】随机数生成器 BSGS

    3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 1362  Solved: 531[Submit][Sta ...

  7. BZOJ3122: [Sdoi2013]随机数生成器(BSGS)

    题意 题目链接 Sol 这题也比较休闲. 直接把\(X_{i+1} = (aX_i + b) \pmod P\)展开,推到最后会得到这么个玩意儿 \[ a^{i-1} (x_1 + \frac{b}{ ...

  8. 【bzoj3122】[Sdoi2013]随机数生成器 BSGS思想的利用

    题目描述 给出递推公式 $x_{i+1}=(ax_i+b)\mod p$ 中的 $p$.$a$.$b$.$x_1$ ,其中 $p$ 是质数.输入 $t$ ,求最小的 $n$ ,使得 $x_n=t$ . ...

  9. [bzoj3122][SDOI2013]随机数生成器 ——BSGS,数列

    题目大意 给定递推序列: F[i] = a*F[i-1] + b (mod c) 求一个最小的i使得F[i] == t 题解 我们首先要化简这个数列,作为一个学渣,我查阅了一些资料: http://d ...

随机推荐

  1. docker 原理

    docker项目的目标是实现轻量级的操作系统虚拟化,Docker的基础是Linux容器(LXC)等技术. 在LXC的基础上,Docker做了进一步的封装,让用户不关心容器的管理,使得操作更为简单.用户 ...

  2. WebSlides - 轻松制作漂亮的 HTML 幻灯片(演讲稿)

    WebSlides 是一个开源的 HTML 幻灯片项目,能够帮助熟悉前端语言的开发者快速制作出效果精美的幻灯片.页面中的每个 <section> 都是一个独立的幻灯片,只需要很少的 CSS ...

  3. Linux - awk 文本处理工具六 - 日志关键字筛选

    查看多少行 ? awk '{print NR}' access.log |tail -n1 日期时间筛选检测 awk '/Dec 10/ {print $0}' /opt/mongod/log/mon ...

  4. 第8月第12天 python json.dumps danmu

    1.json.dumps return JsonResponse({ 'status': WechatMessage.POST_METHOD_REQUIRED[1], 'status_code': W ...

  5. PHP中冒号、endif、endwhile、endfor使用介绍

    我们经常在wordpress一类博客程序的模板里面看到很多奇怪的PHP语法,比如: 复制代码代码如下: <?php if(empty($GET_['a'])): ?> <font c ...

  6. centos6.5环境Redis下载及编译安装

    centos6.5环境Redis下载及编译安装 1:官方站点: http://redis.io/download 下载最新版或者最新stable版 2:解压源码并进入目录 tar -zxvf redi ...

  7. 小白学习安全测试(一)——Http协议基础

    Http协议基础 Web技术发展[http://www.cnblogs.com/ProgrammerGE/articles/1824657.html] 静态WEB[网页] 动态WEB 属于一种应用程序 ...

  8. SendMessage原理初探

    今天跟踪一下SendMessage的实现. 用向导先创建一个Windows application. 向导生成了一个简单的窗口,如下. 在File菜单添加SendMessage,顺便添加一个PostM ...

  9. python强大的数据类型转换

    # 原始的二维表数据集 jsonObj=[] # 添加模拟的数据 for i in range(1001,1004): for j in range(1,34): jsonObj.append({&q ...

  10. thinkphp AOP(面向切面编程)

    AOP: 在软件业,AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技术.AOP是OOP的延续,是软 ...