Maximum Product Subarray LT152
Given an integer array nums, find the contiguous subarray within an array (containing at least one number) which has the largest product.
Example 1:
Input: [2,3,-2,4]
Output:6
Explanation: [2,3] has the largest product 6.
Example 2:
Input: [-2,0,-1]
Output: 0
Explanation: The result cannot be 2, because [-2,-1] is not a subarray.
Idea 1. How can we extend a solution from nums[0..i] to nums[0..i+1]? what shall we do for a newly added element nums[i+1]. Similar to Maximum Subarray LT53, assume we know the largest product for array nums[0..i],
if nums[i+1] >= 0, maxProduct(i+1) = Math.max(maxProduct(i) * nums[i+1], nums[i+1])
if nums[i+1] < 0, to get the max product ending at (i+1), we also need to know the min element ending at i which could be negative, maxProduct(i+1) = Math.max(minProduct(i) * nums[i+1], nums[i+1]).
For any element at i+1, maxProduct(i+1) = Math.max( nums[i+1], minProduct(i) * nums[i+1], maxProduct(i) * nums[i+1] )
Time complexity: O(n)
Space complexity: O(1)
class Solution {
public int maxProduct(int[] nums) {
int minHere = 1, maxHere = 1, result = Integer.MIN_VALUE;
for(int num: nums) {
int res1 = minHere * num;
int res2 = maxHere * num;
if(res1 < res2) {
minHere = Math.min(res1, num);
maxHere = Math.max(res2, num);
}
else {
minHere = Math.min(res2, num);
maxHere = Math.max(res1, num);
}
result = Math.max(result, maxHere);
}
return result;
}
}
class Solution {
public int maxProduct(int[] nums) {
int minHere = 1, maxHere = 1, result = Integer.MIN_VALUE;
for(int num: nums) {
int res1 = minHere * num;
int res2 = maxHere * num;
minHere = Math.min(Math.min(res1, res2), num);
maxHere = Math.max(Math.max(res1, res2), num);
result = Math.max(result, maxHere);
}
return result;
}
}
Maximum Product Subarray LT152的更多相关文章
- 求连续最大子序列积 - leetcode. 152 Maximum Product Subarray
题目链接:Maximum Product Subarray solutions同步在github 题目很简单,给一个数组,求一个连续的子数组,使得数组元素之积最大.这是求连续最大子序列和的加强版,我们 ...
- LeetCode: Maximum Product Subarray && Maximum Subarray &子序列相关
Maximum Product Subarray Title: Find the contiguous subarray within an array (containing at least on ...
- LeetCode Maximum Product Subarray(枚举)
LeetCode Maximum Product Subarray Description Given a sequence of integers S = {S1, S2, . . . , Sn}, ...
- LeetCode_Maximum Subarray | Maximum Product Subarray
Maximum Subarray 一.题目描写叙述 就是求一个数组的最大子序列 二.思路及代码 首先我们想到暴力破解 public class Solution { public int maxSub ...
- 【LeetCode】Maximum Product Subarray 求连续子数组使其乘积最大
Add Date 2014-09-23 Maximum Product Subarray Find the contiguous subarray within an array (containin ...
- leetcode 53. Maximum Subarray 、152. Maximum Product Subarray
53. Maximum Subarray 之前的值小于0就不加了.dp[i]表示以i结尾当前的最大和,所以需要用一个变量保存最大值. 动态规划的方法: class Solution { public: ...
- 【刷题-LeetCode】152 Maximum Product Subarray
Maximum Product Subarray Given an integer array nums, find the contiguous subarray within an array ( ...
- 152. Maximum Product Subarray - LeetCode
Question 152. Maximum Product Subarray Solution 题目大意:求数列中连续子序列的最大连乘积 思路:动态规划实现,现在动态规划理解的还不透,照着公式往上套的 ...
- [LeetCode] Maximum Product Subarray 求最大子数组乘积
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
随机推荐
- heat创建stack
1.使用模板创建虚拟机 heat_template_version: 2018-09-04 description: Simple template to deploy a virtual machi ...
- day15模块内容
1.生成器表达式 先说三元表达式如下 res = [i for i in range(10) if 1 > 5] 这样res就是一个列表6,7,8,9] 只要在这个基础上稍加调整,如下 方括号改 ...
- .resources文件转为可视化.resx文件
ResGen.exe启动闪退.--方法不对 参考:http://www.opdown.com/soft/101205.html 在cmd中启动ResGen.exe. 打开cmd:输入 C:\Windo ...
- Android笔记:OptionsMenu
使用菜单选项OptionsMenu,需要进行以下操作:(1)重写onCreateOptionsMenu方法: public boolean onCreateOptionsMenu(Menu menu) ...
- 不同CSS技术及其CSS性能
OOCSS样式:一个主class,包含所有的共同规则,然后一个独特的规则使用其他class .box {padding:25px;border:1px solid #000;border-radius ...
- elasticsearch 不同集群数据同步
采用快照方式 1.源集群采用NFS,注意权限 2.共享目录完成后,在所有ES服务器上挂载为同一目录 3.创建快照仓库 put _snapshot/my_backup{ "type" ...
- Centos + Maven + Jenkins
下载 JDKwget --no-check-certificate --no-cookie --header "Cookie: oraclelicense=accept-secureback ...
- Android Studio生成签名安装包(Generate Signed APK)
一 打开构建对话框. 二 创建新的密钥库(key store) 可以选择已创建的密钥库,也可以选择创建新的密钥库. 创建完成后,自动导入. 三 选择签名类型. 如果不选,会提示错误. 这里将新旧两种签 ...
- http://www.rabbitmq.com/documentation.html
http://www.rabbitmq.com/documentation.html https://www.gitbook.com/book/geewu/rabbitmq-quick/details
- MVC 的那点小事
两年未见 一切从头再来.我猜到了故事的开头,找工作一如我想象的那般艰难,但是结果却比我预期的要好很多. 第一次开始用MVC 框架,比我想象的要简单的多,就像同事跟我说的,这只是个框架. 言归正传,前两 ...