这道题告诉我们推式子的时候头要够铁。

题意

问一个\(n\times m\)的棋盘,摆上\(n\times 2\)个中国象棋的炮使其两两不能攻击的方案数,对\(998244353\)取模。

\((n\leq m\leq 2000)或(n\leq m\leq 100000且m-n\leq 10)\)。

题解

怎么两个数据范围搞搞。

显然合法方案等价于每行每列炮的数量不超过\(2\),那么每一行就必定放\(2\)个炮了。

我们记\(f(n,m)\)为答案,考虑如何归约到规模更小的问题。

那么我们枚举最后一行炮的个数,分三类情况:

\(1\)、个数为\(0\),归约到\(f(n,m-1)\)。

\(2\)、个数为\(2\)(个数为\(1\)比较麻烦后面再说),那么先枚举放在这一列的是哪两行(\(\times \frac{n(n-1)}{2}\)),接着分类讨论这两行的另一个是否相同:

如果相同,则枚举这是哪一个\((\times (m-1))\),归约到\(f(n-2,m-2)\)。

如果不同,则这两行可以合并(同一行的唯一要求就是两个列不同),只要根据有序性\(\times 2\)即可,于是归约到\(f(n-1,m-1)\)。

\(3\)、个数为\(1\),那么先枚举占了最后一列的是哪一行\((\times n)\),再枚举这一行的另一个在哪一列\((\times (m-1))\),问题就转化为\(n-1\)行\(m-1\)列,其中有一列炮的个数\(\leq 1\)的方案数。

那么考虑容斥,用总方案数减去这一列放了两个的方案数。前者就是\(f(n-1,m-1)\),对于后者,进行与情况\(2\)相似的讨论,也可以进行计算。

可以发现\(n>m\)时\(f(n,m)=0\),于是复杂度就是\(O((m-n)n)\)。

代码里为了方便我将\(m\)减去了\(n\)。

#include<cstdio>
#include<cstring>
const int mod=998244353,inv2=(mod+1)/2;
inline int add(int a,int b)
{
return (a+=b)>=mod?a-mod:a;
}
inline int sub(int a,int b)
{
return (a-=b)<0?a+mod:a;
}
inline int mul(int a,int b)
{
return (long long)a*b%mod;
}
inline int qpow(int a,int b)
{
int res=1;
for(;b;a=mul(a,a),b>>=1)
if(b&1)
res=mul(res,a);
return res;
}
int n,m;
namespace solver1
{
const int N=2005;
int memo[N][N];
inline void init()
{
memset(memo,-1,sizeof(memo));
memo[1][0]=0;
memo[2][0]=1;
memo[3][0]=6;
return;
}
int f(int n,int m)
{
if(m<0)
return 0;
if(n==0)
return 1;
if(~memo[n][m])
return memo[n][m];
int res=0;
//0
res=add(res,f(n,m-1));
//1
res=add(res,mul(mul(n,n+m-1),f(n-1,m)));
if(n>=3)
res=sub(res,mul(mul(n,n+m-1),mul(mul(mul(n-1,n-2),inv2),add(mul(n+m-2,f(n-3,m)),mul(2,f(n-2,m))))));
//2
if(n>=2)
res=add(res,mul(mul(mul(n,n-1),inv2),add(mul(n+m-1,f(n-2,m)),mul(2,f(n-1,m)))));
return memo[n][m]=res;
}
inline void main()
{
init();
printf("%d\n",f(n,m-n));
return;
}
}
namespace solver2
{
const int N=1e5+5;
int memo[N][15];
inline void init()
{
memset(memo,-1,sizeof(memo));
memo[1][0]=0;
memo[2][0]=1;
memo[3][0]=6;
return;
}
int f(int n,int m)
{
if(m<0)
return 0;
if(n==0)
return 1;
if(~memo[n][m])
return memo[n][m];
int res=0;
//0
res=add(res,f(n,m-1));
//1
res=add(res,mul(mul(n,n+m-1),f(n-1,m)));
if(n>=3)
res=sub(res,mul(mul(n,n+m-1),mul(mul(mul(n-1,n-2),inv2),add(mul(n+m-2,f(n-3,m)),mul(2,f(n-2,m))))));
//2
if(n>=2)
res=add(res,mul(mul(mul(n,n-1),inv2),add(mul(n+m-1,f(n-2,m)),mul(2,f(n-1,m)))));
return memo[n][m]=res;
}
inline void main()
{
init();
printf("%d\n",f(n,m-n));
return;
}
}
signed main()
{
scanf("%d%d",&n,&m);
if(n<=2000&&m<=2000)
solver1::main();
else
solver2::main();
return 0;
}

洛谷P4831 Scarlet loves WenHuaKe的更多相关文章

  1. 洛谷 P1580 yyy loves Easter_Egg I

    洛谷 P1580 yyy loves Easter_Egg I 题解: 队列+字符串 #include <cstdio> #include <string> #include ...

  2. [洛谷2397]yyy loves Maths VI

    题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居然也不会,所以只好找你 题目描述 他让redbag找众数他还特意 ...

  3. 洛谷P3602 Koishi Loves Segments(贪心,multiset)

    洛谷题目传送门 贪心小水题. 把线段按左端点从小到大排序,限制点也是从小到大排序,然后一起扫一遍. 对于每一个限制点实时维护覆盖它的所有线段,如果超过限制,则贪心地把右端点最大的线段永远删去,不计入答 ...

  4. [CF327E]Axis Walking([洛谷P2396]yyy loves Maths VII)

    题目大意:给一个长度为$n(1\leqslant n\leqslant24)$的序列$S$和$k(0\leqslant k\leqslant2)$个数. 求有多少种$S$的排列方式使得其任何一个前缀和 ...

  5. [洛谷1580]yyy loves Easter_Egg I

    题目背景 Soha的出题效率着实让人大吃一惊.OI,数学,化学的题目都出好了,物理的题还没有一道.于是,Huntfire,absi2011,lanlan对soha进行轮番炸,准备炸到soha出来,不料 ...

  6. 洛谷P2397 yyy loves Maths VI (mode)

    P2397 yyy loves Maths VI (mode) 题目背景 自动上次redbag用加法好好的刁难过了yyy同学以后,yyy十分愤怒.他还击给了redbag一题,但是这题他惊讶的发现自己居 ...

  7. 洛谷P2396 yyy loves Maths VII

    P2396 yyy loves Maths VII 题目背景 yyy对某些数字有着情有独钟的喜爱,他叫他们为幸运数字;然而他作死太多,所以把自己讨厌的数字成为"厄运数字" 题目描述 ...

  8. 洛谷——P2393 yyy loves Maths II

    P2393 yyy loves Maths II 题目背景 上次蒟蒻redbag可把yyy气坏了,yyy说他只是小学生,蒟蒻redbag这次不坑他了. 题目描述 redbag给了yyy很多个数,要yy ...

  9. 洛谷 P4882 lty loves 96! 解题报告

    P4882 lty loves 96! 题目背景 众所周知,\(lty\)非常喜欢\(96\)这两个数字(想歪的现在马上面壁去),更甚于复读(人本复)! 题目描述 由于爱屋及乌,因此,\(lty\)对 ...

随机推荐

  1. k-center问题-学习

    k-center问题: In graph theory, the metric k-center or metric facility location problem is a combinator ...

  2. Ajax的用法

    1 Ajax是什么 1.1 Asynchronous JavaScript and XML(异步的javascript和xml) 实质为:使用浏览器内置的一个对象(XmlHttpRequest)向服务 ...

  3. 第12章 GPIO输入—按键检测

    第12章     GPIO输入—按键检测 全套200集视频教程和1000页PDF教程请到秉火论坛下载:www.firebbs.cn 野火视频教程优酷观看网址:http://i.youku.com/fi ...

  4. c# 无边框窗体的边框阴影

    Windows API: using System; using System.Collections.Generic; using System.ComponentModel; using Syst ...

  5. 2017-2018-2 《网络对抗技术》 20155310 第二周 Exp1 PC平台逆向破解(5)M

    2017-2018-2 <网络对抗技术> 20155310 第二周 Exp1 PC平台逆向破解(5)M 一.实践目标 1.1实践介绍 本次实践的对象是一个名为pwn1的linux可执行文件 ...

  6. stm32的PWM占空比

    PWM一共有两种模式,PWM1模式:CNT<CRRx为有效电平.CNT>CRRx为无效电平.PWM2模式相反. 有限电平通过设置极性来确定: TIM_OCInitStructure.TIM ...

  7. 腾讯云CVM服务器怎么建网站

    腾讯云云服务器CVM站在用户的角度看就相当于一台计算机,虽然实际上它是一个虚拟服务器,是一个大的云端服务器集群虚拟出来的一个虚拟服务器,在使用上直接当做一个实际的服务器即可.那么,对于一个新手菜鸟来说 ...

  8. 利用OVS+FLOODLIGHT,为数据表添加VLAN_ID和MPLS

    话不多说,直接上拓扑: 我这里是用主机h1 (10.0.0.1)ping 主机h2(10.0.0.2) 1.添加VLAN标签 v1: sudo ovs-ofctl add-flow m1-s1 in_ ...

  9. libgdx学习记录13——矩形CD进度条绘制

    利用ShapeRenderer可进行矩形进度条的绘制,多变形的填充等操作. 这是根据角度获取矩形坐标的函数. public Vector2 GetPoint( float x, float y, fl ...

  10. Nuxt.js + koa2 入门

    1. nuxt项目初始化 下面是使用 koa 模板方法初始化一个项目,使用该方法需要将 nuxt 的版本降至1.4.2: 官方 https://zh.nuxtjs.org/guide/installa ...