一、简介

PCA(Principal Components Analysis)即主成分分析,是图像处理中经常用到的降维方法,大家知道,我们在处理有关数字图像处理方面的问题时,比如经常用的图像的查询问题,在一个几万或者几百万甚至更大的数据库中查询一幅相近的图像。这时,我们通常的方法是对图像库中的图片提取响应的特征,如颜色,纹理,sift,surf,vlad等等特征,然后将其保存,建立响应的数据索引,然后对要查询的图像提取相应的特征,与数据库中的图像特征对比,找出与之最近的图片。这里,如果我们为了提高查询的准确率,通常会提取一些较为复杂的特征,如sift,surf等,一幅图像有很多个这种特征点,每个特征点又有一个相应的描述该特征点的128维的向量,设想如果一幅图像有300个这种特征点,那么该幅图像就有300*vector(128维)个,如果我们数据库中有一百万张图片,这个存储量是相当大的,建立索引也很耗时,如果我们对每个向量进行PCA处理,将其降维为64维,是不是很节约存储空间啊?对于学习图像处理的人来说,都知道PCA是降维的,但是,很多人不知道具体的原理,为此,我写这篇文章,来详细阐述一下PCA及其具体计算过程:

二、PCA详解

1、原始数据:

为了方便,我们假定数据是二维的,借助网络上的一组数据,如下:

x=[2.5, 0.5, 2.2, 1.9, 3.1, 2.3, 2, 1, 1.5, 1.1]T
y=[2.4, 0.7, 2.9, 2.2, 3.0, 2.7, 1.6, 1.1, 1.6, 0.9]T

2、计算协方差矩阵

什么是协方差矩阵?相信看这篇文章的人都学过数理统计,一些基本的常识都知道,但是,也许你很长时间不看了,都忘差不多了,为了方便大家更好的理解,这里先简单的回顾一下数理统计的相关知识,当然如果你知道协方差矩阵的求法你可以跳过这里。

(1)协方差矩阵:

首先我们给你一个含有n个样本的集合,依次给出数理统计中的一些相关概念:

均值:
标准差:
方差:

既然我们都有这么多描述数据之间关系的统计量,为什么我们还要用协方差呢?我们应该注意到,标准差和方差一般是用来描述一维数据的,但现实生活我们常常遇到含有多维数据的数据集,最简单的大家上学时免不了要统计多个学科的考试成绩。面对这样的数据集,我们当然可以按照每一维独立的计算其方差,但是通常我们还想了解这几科成绩之间的关系,这时,我们就要用协方差,协方差就是一种用来度量两个随机变量关系的统计量,其定义为:

从协方差的定义上我们也可以看出一些显而易见的性质,如:

(X的方差)

需要注意的是,协方差也只能处理二维问题,那维数多了自然就需要计算多个协方差,比如n维的数据集就需要计算个协方差,那自然而然的我们会想到使用矩阵来组织这些数据。给出协方差矩阵的定义:

这个定义还是很容易理解的,我们可以举一个简单的三维的例子,假设数据集有三个维度,则协方差矩阵为

可见,协方差矩阵是一个对称的矩阵,而且对角线是各个维度上的方差。

(2)协方差矩阵的求法:

协方差矩阵计算的是不同维度之间的协方差,而不是不同样本之间的。下面我们将在matlab中用一个例子进行详细说明:

首先,随机产生一个10*3维的整数矩阵作为样本集,10为样本的个数,3为样本的维数。
MySample = fix(rand(10,3)*50)

根据公式,计算协方差需要计算均值,那是按行计算均值还是按列呢,我一开始就老是困扰这个问题。前面我们也特别强调了,协方差矩阵是计算不同维度间的协方差,要时刻牢记这一点。样本矩阵的每行是一个样本,每列为一个维度,所以我们要按列计算均值。为了描述方便,我们先将三个维度的数据分别赋值:

dim1 = MySample(:,1);
dim2 = MySample(:,2);
dim3 = MySample(:,3);

计算dim1与dim2,dim1与dim3,dim2与dim3的协方差:

sum( (dim1-mean(dim1)) .* (dim2-mean(dim2)) ) / ( size(MySample,1)-1 ) % 得到  74.5333
sum( (dim1-mean(dim1)) .* (dim3-mean(dim3)) ) / ( size(MySample,1)-1 ) % 得到  -10.0889
sum( (dim2-mean(dim2)) .* (dim3-mean(dim3)) ) / ( size(MySample,1)-1 ) % 得到  -10***000

搞清楚了这个后面就容易多了,协方差矩阵的对角线就是各个维度上的方差,下面我们依次计算:

std(dim1)^2 % 得到   108.3222
std(dim2)^2 % 得到   260.6222
std(dim3)^2 % 得到  94.1778

这样,我们就得到了计算协方差矩阵所需要的所有数据,调用Matlab自带的cov函数进行验证:

cov(MySample)

可以看到跟我们计算的结果是一样的,说明我们的计算是正确的。但是通常我们不用这种方法,而是用下面简化的方法进行计算:

先让样本矩阵中心化,即每一维度减去该维度的均值,然后直接用新的到的样本矩阵乘上它的转置,然后除以(N-1)即可。其实这种方法也是由前面的公式通道而来,只不过理解起来不是很直观而已。大家可以自己写个小的矩阵看一下就明白了。其Matlab代码实现如下:

X = MySample – repmat(mean(MySample),10,1);    % 中心化样本矩阵
C = (X’*X)./(size(X,1)-1)

(为方便对matlab不太明白的人,小小说明一下各个函数,同样,对matlab有一定基础的人直接跳过:

B = repmat(A,m,n ) %%将矩阵 A 复制 m×n 块,即把 A 作为 B 的元素,B 由 m×n 个 A 平铺而成。B 的维数是 [size(A,1)*m, (size(A,2)*n]

B = mean(A)的说明:

如果你有这样一个矩阵:A = [1 2 3; 3 3 6; 4 6 8; 4 7 7];
用mean(A)(默认dim=1)就会求每一列的均值
ans =
    3.0000    4.5000    6.0000
用mean(A,2)就会求每一行的均值 
ans =
    2.0000
    4.0000
    6.0000

6.0000

size(A,n)%% 如果在size函数的输入参数中再添加一项n,并用1或2为n赋值,则 size将返回矩阵的行数或列数。其中r=size(A,1)该语句返回的是矩阵A的行数, c=size(A,2) 该语句返回的是矩阵A的列数)

上面我们简单说了一下协方差矩阵及其求法,言归正传,我们用上面简化求法,求出样本的协方差矩阵为:

3、计算协方差矩阵的特征向量和特征值

因为协方差矩阵为方阵,我们可以计算它的特征向量和特征值,如下:

[eigenvectors,eigenvalues] = eig(cov)

我们可以看到这些矢量都是单位矢量,也就是它们的长度为1,这对PCA来说是很重要的。

4、选择成分组成模式矢量

求出协方差矩阵的特征值及特征向量之后,按照特征值由大到小进行排列,这将给出成分的重要性级别。现在,如果你喜欢,可以忽略那些重要性很小的成分,当然这会丢失一些信息,但是如果对应的特征值很小,你不会丢失很多信息。如果你已经忽略了一些成分,那么最后的数据集将有更少的维数,精确地说,如果你的原始数据是n维的,你选择了前p个主要成分,那么你现在的数据将仅有p维。现在我们要做的是组成一个模式矢量,这只是几个矢量组成的矩阵的一个有意思的名字而已,它由你保持的所有特征矢量构成,每一个特征矢量是这个矩阵的一列。

对于我们的数据集,因为有两个特征矢量,因此我们有两个选择。我们可以用两个特征矢量组成模式矢量:

我们也可以忽略其中较小特征值的一个特征矢量,从而得到如下模式矢量:

5、得到降维后的数据

其中rowFeatureVector是由模式矢量作为列组成的矩阵的转置,因此它的行就是原来的模式矢量,而且对应最大特征值的特征矢量在该矩阵的最上一行。rowdataAdjust是每一维数据减去均值后,所组成矩阵的转置,即数据项目在每一列中,每一行是一维,对我们的样本来说即是,第一行为x维上数据,第二行为y维上的数据。FinalData是最后得到的数据,数据项目在它的列中,维数沿着行。

这将给我们什么结果呢?这将仅仅给出我们选择的数据。我们的原始数据有两个轴(x和y),所以我们的原始数据按这两个轴分布。我们可以按任何两个我们喜欢的轴表示我们的数据。如果这些轴是正交的,这种表达将是最有效的,这就是特征矢量总是正交的重要性。我们已经将我们的数据从原来的xy轴表达变换为现在的单个特征矢量表达。

(说明:如果要恢复原始数据,只需逆过程计算即可,即:

到此为止,相信你已经掌握了PCA及其原理了

转自:https://my.oschina.net/gujianhan/blog/225241

PCA (主成分分析)详解 (写给初学者) 结合matlab(转载)的更多相关文章

  1. 33 Python 详解命令解析 - argparse--更加详细--转载

    https://blog.csdn.net/lis_12/article/details/54618868 Python 详解命令行解析 - argparse Python 详解命令行解析 - arg ...

  2. 详解JMeter函数和变量(转载)

    详解JMeter函数和变量(1) JMeter函数可以被认为是某种特殊的变量,它们可以被采样器或者其他测试元件所引用.函数调用的语法如下: ${__functionName(var1,var2,var ...

  3. HTTP协议详解(真的很经典)(转载)

    HTTP协议详解(真的很经典):http://www.cnblogs.com/li0803/archive/2008/11/03/1324746.html 引言 HTTP是一个属于应用层的面向对象的协 ...

  4. 【机器学习详解】SMO算法剖析(转载)

    [机器学习详解]SMO算法剖析 转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/51227754 CSDN−勿在浮沙筑高台 本文力 ...

  5. 主成分分析(PCA)原理详解_转载

    一.PCA简介 1. 相关背景 在许多领域的研究与应用中,往往需要对反映事物的多个变量进行大量的观测,收集大量数据以便进行分析寻找规律.多变量大样本无疑会为研究和应用提供了丰富的信息,但也在一定程度上 ...

  6. PCA算法详解——本质上就是投影后使得数据尽可能分散(方差最大),PCA可以被定义为数据在低维线性空间上的正交投影,这个线性空间被称为主⼦空间(principal subspace),使得投影数据的⽅差被最⼤化(Hotelling, 1933),即最大方差理论。

    PCA PCA(Principal Component Analysis,主成分分析)是一种常用的数据分析方法.PCA通过线性变换将原始数据变换为一组各维度线性无关的表示,可用于提取数据的主要特征分量 ...

  7. java 线程Thread.Sleep详解 Thread.Sleep(0)的作用(转载)

    我们可能经常会用到 Thread.Sleep 函数来使线程挂起一段时间.那么你有没有正确的理解这个函数的用法呢? 思考下面这两个问题: 1.假设现在是 2008-4-7 12:00:00.000,如果 ...

  8. redis详解(三)-- 面试题(转载)

    1. 使用redis有哪些好处? (1) 速度快,因为数据存在内存中,类似于HashMap,HashMap的优势就是查找和操作的时间复杂度都是O(1) (2) 支持丰富数据类型,支持string,li ...

  9. Free命令详解和释放linux Cache(转载)

    因为LINUX的内核机制,一般情况下不需要特意去释放已经使用的cache.这些cache起来的内容可以增加文件以及的读写速度. 先说下free命令怎么看内存 [root@yuyii proc]# fr ...

  10. HTTP协议详解以及URL具体访问过程(转载)

    https://blog.csdn.net/f45056231p/article/details/82533490

随机推荐

  1. Latex表格插入

    \begin{table}[h] \centering \caption{Traffic flows description} \begin{tabular}{|c||c|c|c|c|} \hline ...

  2. 引用限定符(c++11)

    1.概念 1)下面这种情况将对一个右值调用成员函数.对右值赋值 string s1 = "abc", s2 = "def"; auto n = (s1 + s2 ...

  3. 图解TCP/IP(一)

    IP(Internet Protocol) IP/ICMP -数据链路层的主要作用是在互连同一种数据链路的节点之间进行包传递.而一旦跨越多种数据链路,就需要借助网络层. -配备IP的设备,但是不进行路 ...

  4. Ubuntu 16.04 搭建LAMP服务器环境流程

    http://www.linuxidc.com/Linux/2016-09/135629.htm [安装mysql时 只需安装 mysql-server无需安装mysql-client] mysql ...

  5. VSCode的终端修改

    快速打开VSCode的快捷键是:Ctrl + `(反引号) 转自:https://blog.csdn.net/u013517122/article/details/82776607 因本人实在忍受不了 ...

  6. 20155205 2016-2017-2 《Java程序设计》第2周学习总结

    20155205 2016-2017-2 <Java程序设计>第2周学习总结 教材学习内容总结 变量 变量在命名时有一些规则,它不可以使用数字作为开头,也不可以使用特殊字符. 对常用忽略符 ...

  7. MongoDB、redis、memcached

    mongodb和memcached不是一个范畴内的东西. mongodb     是文档型的非关系型数据库,其优势在于查询功能比较强大,能存储海量数据. memcached,redis mongodb ...

  8. Android Studio开发之Gradle科普

    我们以前开发都是用 Eclipse ,而 Eclipse 大家都知道是一种 IDE (集成开发环境),最初是用来做 Java 开发的,而 Android 是基于 Java 语言的,所以最初 Googl ...

  9. hdu 3015

    这个题给你一堆树,每棵树的位置x和高度h都给你 f[i]代表这棵树的位置排名,s[i]代表这棵树的高度排名 问你任意两棵树的(f[i] - f[j])*min(s[i],s[j])和 (f[i]-f[ ...

  10. 简单创建一个“嗨新房”的mac客户端

    下载地址:https://github.com/mapanguan/Mac_HiNewHouse