更多有用的例子和算子讲解参见:

http://homepage.cs.latrobe.edu.au/zhe/ZhenHeSparkRDDAPIExamples.html

map是对每个元素操作, mapPartitions是对其中的每个partition操作

-------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------
mapPartitionsWithIndex : 把每个partition中的分区号和对应的值拿出来, 看源码

val func = (index: Int, iter: Iterator[(Int)]) => {
iter.toList.map(x => "[partID:" + index + ", val: " + x + "]").iterator
}
val rdd1 = sc.parallelize(List(1,2,3,4,5,6,7,8,9), 2)
rdd1.mapPartitionsWithIndex(func).collect -------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------
aggregate
def func1(index: Int, iter: Iterator[(Int)]) : Iterator[String] = {
iter.toList.map(x => "[partID:" + index + ", val: " + x + "]").iterator
}
val rdd1 = sc.parallelize(List(1,2,3,4,5,6,7,8,9), 2)
rdd1.mapPartitionsWithIndex(func1).collect
###是action操作, 第一个参数是初始值, 二:是2个函数[每个函数都是2个参数(第一个参数:先对个个分区进行合并, 第二个:对个个分区合并后的结果再进行合并), 输出一个参数]
###0 + (0+1+2+3+4 + 0+5+6+7+8+9)
rdd1.aggregate(0)(_+_, _+_)
rdd1.aggregate(0)(math.max(_, _), _ + _)
###5和1比, 得5再和234比得5 --> 5和6789比,得9 --> 5 + (5+9)
rdd1.aggregate(5)(math.max(_, _), _ + _) val rdd2 = sc.parallelize(List("a","b","c","d","e","f"),2)
def func2(index: Int, iter: Iterator[(String)]) : Iterator[String] = {
iter.toList.map(x => "[partID:" + index + ", val: " + x + "]").iterator
}
rdd2.aggregate("")(_ + _, _ + _)
rdd2.aggregate("=")(_ + _, _ + _) val rdd3 = sc.parallelize(List("12","23","345","4567"),2)
rdd3.aggregate("")((x,y) => math.max(x.length, y.length).toString, (x,y) => x + y) val rdd4 = sc.parallelize(List("12","23","345",""),2)
rdd4.aggregate("")((x,y) => math.min(x.length, y.length).toString, (x,y) => x + y) val rdd5 = sc.parallelize(List("12","23","","345"),2)
rdd5.aggregate("")((x,y) => math.min(x.length, y.length).toString, (x,y) => x + y) -------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------
aggregateByKey
val pairRDD = sc.parallelize(List( ("cat",2), ("cat", 5), ("mouse", 4),("cat", 12), ("dog", 12), ("mouse", 2)), 2)
def func2(index: Int, iter: Iterator[(String, Int)]) : Iterator[String] = {
iter.toList.map(x => "[partID:" + index + ", val: " + x + "]").iterator
}
pairRDD.mapPartitionsWithIndex(func2).collect
pairRDD.aggregateByKey(0)(math.max(_, _), _ + _).collect
pairRDD.aggregateByKey(100)(math.max(_, _), _ + _).collect -------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------
checkpoint

sc.setCheckpointDir("hdfs://node-1.itcast.cn:9000/ck")
val rdd = sc.textFile("hdfs://node-1.itcast.cn:9000/wc").flatMap(_.split(" ")).map((_, 1)).reduceByKey(_+_)
rdd.checkpoint
rdd.isCheckpointed
rdd.count
rdd.isCheckpointed
rdd.getCheckpointFile -------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------
coalesce, repartition

val rdd1 = sc.parallelize(1 to 10, 10)
val rdd2 = rdd1.coalesce(2, false)
rdd2.partitions.length -------------------------------------------------------------------------------------------
------------------------------------------------------------------------------------------- -------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------
combineByKey
: 和reduceByKey是相同的效果
###第一个参数x:原封不动取出来, 第二个参数:是函数, 局部运算, 第三个:是函数, 对局部运算后的结果再做运算
###每个分区中每个key中value中的第一个值, (hello,1)(hello,1)(good,1)-->(hello(1,1),good(1))-->x就相当于hello的第一个1, good中的1
val rdd1 = sc.textFile("hdfs://master:9000/wordcount/input/").flatMap(_.split(" ")).map((_, 1))
val rdd2 = rdd1.combineByKey(x => x, (a: Int, b: Int) => a + b, (m: Int, n: Int) => m + n)
rdd1.collect
rdd2.collect ###当input下有3个文件时(有3个block块, 不是有3个文件就有3个block, ), 每个会多加3个10
val rdd3 = rdd1.combineByKey(x => x + 10, (a: Int, b: Int) => a + b, (m: Int, n: Int) => m + n)
rdd3.collect val rdd4 = sc.parallelize(List("dog","cat","gnu","salmon","rabbit","turkey","wolf","bear","bee"), 3)
val rdd5 = sc.parallelize(List(1,1,2,2,2,1,2,2,2), 3)
val rdd6 = rdd5.zip(rdd4)
val rdd7 = rdd6.combineByKey(List(_), (x: List[String], y: String) => x :+ y, (m: List[String], n: List[String]) => m ++ n) -------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------
countByKey
val rdd1 = sc.parallelize(List(("a", 1), ("b", 2), ("b", 2), ("c", 2), ("c", 1)))
rdd1.countByKey
rdd1.countByValue -------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------
filterByRange
val rdd1 = sc.parallelize(List(("e", 5), ("c", 3), ("d", 4), ("c", 2), ("a", 1)))
val rdd2 = rdd1.filterByRange("b", "d")
rdd2.collect -------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------
flatMapValues : Array((a,1), (a,2), (b,3), (b,4))
val rdd3 = sc.parallelize(List(("a", "1 2"), ("b", "3 4")))
val rdd4 = rdd3.flatMapValues(_.split(" "))
rdd4.collect -------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------
foldByKey
val rdd1 = sc.parallelize(List("dog", "wolf", "cat", "bear"), 2)
val rdd2 = rdd1.map(x => (x.length, x))
val rdd3 = rdd2.foldByKey("")(_+_) val rdd = sc.textFile("hdfs://node-1.itcast.cn:9000/wc").flatMap(_.split(" ")).map((_, 1))
rdd.foldByKey(0)(_+_) -------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------
foreachPartition

val rdd1 = sc.parallelize(List(1, 2, 3, 4, 5, 6, 7, 8, 9), 3)
rdd1.foreachPartition(x => println(x.reduce(_ + _))) -------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------
keyBy : 以传入的参数做key

val rdd1 = sc.parallelize(List("dog", "salmon", "salmon", "rat", "elephant"), 3)
val rdd2 = rdd1.keyBy(_.length)
rdd2.collect -------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------
keys values

val rdd1 = sc.parallelize(List("dog", "tiger", "lion", "cat", "panther", "eagle"), 2)
val rdd2 = rdd1.map(x => (x.length, x))
rdd2.keys.collect
rdd2.values.collect -------------------------------------------------------------------------------------------
-------------------------------------------------------------------------------------------
mapPartitions

Spark中的常用算子的更多相关文章

  1. 【Spark篇】---Spark中Transformations转换算子

    一.前述 Spark中默认有两大类算子,Transformation(转换算子),懒执行.action算子,立即执行,有一个action算子 ,就有一个job. 通俗些来说由RDD变成RDD就是Tra ...

  2. Spark学习之常用算子介绍

    1. reduceByKey reduceByKey的作用对像是(key, value)形式的rdd,而reduce有减少.压缩之意,reduceByKey的作用就是对相同key的数据进行处理,最终每 ...

  3. spark学习(10)-RDD的介绍和常用算子

    RDD(弹性分布式数据集,里面并不存储真正要计算的数据,你对RDD的操作,他会在Driver端转换成Task,下发到Executor计算分散在多台集群上的数据) RDD是一个代理,你对代理进行操作,他 ...

  4. Spark中常用工具类Utils的简明介绍

    <深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析> ...

  5. Spark小课堂Week7 从Spark中一个例子看面向对象设计

    Spark小课堂Week7 从Spark中一个例子看面向对象设计 今天我们讨论了个问题,来设计一个Spark中的常用功能. 功能描述:数据源是一切处理的源头,这次要实现下加载数据源的方法load() ...

  6. Scala中sortBy和Spark中sortBy区别

    Scala中sortBy是以方法的形式存在的,并且是作用在Array或List集合排序上,并且这个sortBy默认只能升序,除非实现隐式转换或调用reverse方法才能实现降序,Spark中sortB ...

  7. 【Spark篇】---Spark中控制算子

    一.前述 Spark中控制算子也是懒执行的,需要Action算子触发才能执行,主要是为了对数据进行缓存. 控制算子有三种,cache,persist,checkpoint,以上算子都可以将RDD持久化 ...

  8. spark常用算子总结

    算子分为value-transform, key-value-transform, action三种.f是输入给算子的函数,比如lambda x: x**2 常用算子: keys: 取pair rdd ...

  9. Spark学习之路(四)—— RDD常用算子详解

    一.Transformation spark常用的Transformation算子如下表: Transformation算子 Meaning(含义) map(func) 对原RDD中每个元素运用 fu ...

随机推荐

  1. C的指针和数组

    int i; //定义整型变量i int *p; //定义一个指向int的指针变量p int a[5]; //定义一个int数组a int *p[5]; //定义一个指针数组,其中每个数组元素指向一个 ...

  2. tomcat部署项目访问不加项目名方法

    直接主题:tomcat部署项目访问不加项目名方法是打开tomcat的conf目录下server.xml文件 加入 <Context path="" docBase=" ...

  3. 1057 Stack 树状数组

    Stack is one of the most fundamental data structures, which is based on the principle of Last In Fir ...

  4. NSUserDefaults 添加与删除

    //NSUserDefaults会创建一个plist文件,内部存放一个字典    NSUserDefaults *userDefaults = [NSUserDefaults standardUser ...

  5. AI模型训练/算法评估 测试员

  6. day29(对象转xml(使用java))

    通常使用xStream工具. 将集合,数组,对象转成XML. 导入两个包: xpp3_min-1.1.4c.jar xstream-1.4.4.jar 自定义一个类 package com.baidu ...

  7. Java方法、构造方法的重载;创建对象;调用方法

    方法的重载 概念:多个同名但是不同参数的方法称为方法的重载 作用:编译器会根据调用时传递的实际参数自动判断具体调用的是哪个重载方法 特点:方法名相同:同一作用域:参数不同:数量不同 类型不同 顺序不同 ...

  8. 《mysql必知必会》学习_第三章_20180724_欢

    P16: use crashcourse; #选择数据库#使用crashcouse这个数据库,因为我没有crashcourse这个数据库,所以用我的hh数据库代替. P17: show databas ...

  9. 分类算法之朴素贝叶斯分类(Naive Bayesian classification)

    1.1.摘要 贝叶斯分类是一类分类算法的总称,这类算法均以贝叶斯定理为基础,故统称为贝叶斯分类.本文作为分类算法的第一篇,将首先介绍分类问题,对分类问题进行一个正式的定义.然后,介绍贝叶斯分类算法的基 ...

  10. 再论hibernatetemplate

    自动生成hibernate配置文件的时候,会在dao层用到getSession()方法来操作数据库记录,但是他还有个方法getHibernateTemplate(),这两个方法究竟有什么区别呢? 1. ...