题意

给定 \(n\) 个节点的树,点有点权 \(w\) ,划分成多条儿子到祖先的链,要求每条链点数不超过 \(L\) ,和不超过 \(S\),求最少划分成几条链。

\(n\leq 10^5\) .

分析

  • 贪心,从叶子节点开始向上合并,倍增计算出以一个节点为链底,能够最多到达哪个祖先 \({up}_u\)。

  • 每个节点合并和时候取每个子树的 \(up\) 最浅的那个,正确性显然。

  • 总时间复杂度为 \(O(nlogn)\)。

代码

#include<bits/stdc++.h>
using namespace std;
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].last,v=e[i].to)
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
typedef long long LL;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
const int N=1e5 + 7;
int n,L,edc,ans;
int head[N],fa[N][18],dep[N];
LL dis[N],S,w[N],up[N];
struct edge{
int last,to;
edge(){}edge(int last,int to):last(last),to(to){}
}e[N*2];
void Add(int a,int b){
e[++edc]=edge(head[a],b),head[a]=edc;
e[++edc]=edge(head[b],a),head[b]=edc;
}
void dfs1(int u){
dis[u]=w[u]+dis[fa[u][0]],dep[u]=dep[fa[u][0]]+1;
rep(i,1,17) fa[u][i]=fa[fa[u][i-1]][i-1];
go(u)if(v^fa[u][0])
fa[v][0]=u,dfs1(v);
}
void dfs2(int u){
go(u)if(v^fa[u][0]){
dfs2(v);
if(up[u]==-1||dep[up[u]]>dep[up[v]]) up[u]=up[v];
}
if(up[u]==-1||dep[up[u]]>=dep[u]){
++ans;int tl=L,x=u;LL ts=S;
for(int i=17;~i;--i) if((1<<i)<=tl&&dis[x]-dis[fa[x][i]]<=ts){
ts-=dis[x]-dis[fa[x][i]];
tl-=(1<<i);
x=fa[x][i];
}
up[u]=x;
}
}
int main(){
scanf("%d%d%I64d",&n,&L,&S);
memset(up,-1,sizeof up);
rep(i,1,n) {
w[i]=gi();
if(w[i]>S) return puts("-1"),0;
}
rep(i,2,n) Add(i,gi());
dfs1(1);dfs2(1);
printf("%d\n",ans);
return 0;
}

[CF1059E]Split the Tree[贪心+树上倍增]的更多相关文章

  1. CF1059E Split the Tree(倍增)

    题意翻译 现有n个点组成一棵以1为根的有根树,第i个点的点权为wi,需将其分成若干条垂直路径使得每一个点当且仅当被一条垂直路径覆盖,同时,每条垂直路径长度不能超过L,点权和不能超过S,求最少需要几条垂 ...

  2. LUOGU P1084 疫情控制(二分+贪心+树上倍增)

    传送门 解题思路 比较神的一道题.首先发现是最小值问题,并且具有单调性,所以要考虑二分答案.其次有一个性质是军队越靠上越优,所以我们要将所有的军队尽量向上提,这一过程我们用倍增实现.发现这时有两种军队 ...

  3. [bzoj1977][BeiJing2010组队]次小生成树 Tree——树上倍增+lca

    Brief Description 求一个无向图的严格次小生成树. Algorithm Design 考察最小生成树的生成过程.对于一个非树边而言,如果我们使用这一条非树边去替换原MST的路径上的最大 ...

  4. luogu4180 次小生成树Tree 树上倍增

    题目:求一个无向图的严格次小生成树(即次小生成树的边权和严格小于最小生成树的边权和) 首先求出图中的最小生成树.任意加一条树外边都会导致环的出现.我们现在目标是在树外边集合B中,找到边b∈B,a∈b所 ...

  5. HDU 4822 Tri-war(LCA树上倍增)(2013 Asia Regional Changchun)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4822 Problem Description Three countries, Red, Yellow ...

  6. [Split The Tree][dfs序+树状数组求区间数的种数]

    Split The Tree 时间限制: 1 Sec  内存限制: 128 MB提交: 46  解决: 11[提交] [状态] [讨论版] [命题人:admin] 题目描述 You are given ...

  7. Luogu 1084 NOIP2012 疫情控制 (二分,贪心,倍增)

    Luogu 1084 NOIP2012 疫情控制 (二分,贪心,倍增) Description H 国有 n 个城市,这 n 个城市用 n-1 条双向道路相互连通构成一棵树, 1 号城市是首都, 也是 ...

  8. 【CodeForces】983 E. NN country 树上倍增+二维数点

    [题目]E. NN country [题意]给定n个点的树和m条链,q次询问一条链(a,b)最少被多少条给定的链覆盖.\(n,m,q \leq 2*10^5\). [算法]树上倍增+二维数点(树状数组 ...

  9. BNUOJ 52317 As Easy As Possible 树上倍增/主席树

    题目链接: https://acm.bnu.edu.cn/v3/problem_show.php?pid=52317 As Easy As Possible Case Time Limit: 1000 ...

随机推荐

  1. 想涨工资吗?那就学习Scala,Golang或Python吧

    [编者按]据薪水调查机构 PayScale 提供的数据显示,掌握 Scala,Golang 和 Python 语言以及诸如 Apache Spark 之类的大数据技术,能带来最大的薪水提升.本文作者为 ...

  2. BigDecimal 工具类

    arg1.compareTo(arg2) arg1 > arg2 返回 int 1 arg1 = arg2 返回 int 0 arg1 < arg2 返回 int -1 public cl ...

  3. jboss eap 6.2 ear包 下使用log4j日志

    被jboss7/eap的日志问题搞死了,查了好多资料,都是war包的,基本上使用jboss-deployment-structure.xml放到WEB-INF下,文件内容如下: 是我总是没法成功,最后 ...

  4. pvr.ccz 与 png 格式 互转的解决方案

    pvr.ccz与png互转 pvr是苹果的一种图片格式,我们需要转成png,最简单的办法就是用TexturePacker. 准备工作 TexturePacker :http://www.codeand ...

  5. 读高性能JavaScript编程 第四章 Conditionals

    if else 和 switch    &&    递归 if else 和 switch 一般来说,if-else 适用于判断两个离散的值或者判断几个不同的值域.如果判断多于两个离散 ...

  6. 题解 P2920 【[USACO08NOV]时间管理Time Management】

    题面 作为一名忙碌的商人,约翰知道必须高效地安排他的时间.他有N工作要 做,比如给奶牛挤奶,清洗牛棚,修理栅栏之类的. 为了高效,列出了所有工作的清单.第i分工作需要T_i单位的时间来完成,而 且必须 ...

  7. olivettifaces数据集实现人脸识别代码

    数据集: # -*- coding: utf-8 -*- """ Created on Wed Apr 24 18:21:21 2019 @author: 92958 & ...

  8. Java多线程学习笔记之二缓存

    1.高速缓存 由来:处理器处理能力原因大于主内存(DRAM)访问速率,为了弥补这个差距,引入了高速缓存. 高速缓存是一种存取速率远比主内存大而容量远比主内存小的存储部件,每一个处理器都有其高速缓存.在 ...

  9. MySQL5.7通过压缩包方式安装与配置

    首先下载MySQL5.7的压缩包:https://dev.mysql.com/downloads/mysql/5.7.html#downloads 1.解压缩到目标文件夹,解压后有许多文件,介绍一下用 ...

  10. ArcMap 导入Excel坐标数据

    1  准备Excel坐标数据集合 2  ArcMap加入Excel数据 将excel文件放入arcmap工作区的物理路径下 在工作区的根图层上点键,选择添加数据,找到excel文件并选择相应的工作薄 ...