题意

给定 \(n\) 个节点的树,点有点权 \(w\) ,划分成多条儿子到祖先的链,要求每条链点数不超过 \(L\) ,和不超过 \(S\),求最少划分成几条链。

\(n\leq 10^5\) .

分析

  • 贪心,从叶子节点开始向上合并,倍增计算出以一个节点为链底,能够最多到达哪个祖先 \({up}_u\)。

  • 每个节点合并和时候取每个子树的 \(up\) 最浅的那个,正确性显然。

  • 总时间复杂度为 \(O(nlogn)\)。

代码

#include<bits/stdc++.h>
using namespace std;
#define go(u) for(int i=head[u],v=e[i].to;i;i=e[i].last,v=e[i].to)
#define rep(i,a,b) for(int i=a;i<=b;++i)
#define pb push_back
typedef long long LL;
inline int gi(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)) {if(ch=='-') f=-1;ch=getchar();}
while(isdigit(ch)){x=(x<<3)+(x<<1)+ch-48;ch=getchar();}
return x*f;
}
template<typename T>inline bool Max(T &a,T b){return a<b?a=b,1:0;}
template<typename T>inline bool Min(T &a,T b){return b<a?a=b,1:0;}
const int N=1e5 + 7;
int n,L,edc,ans;
int head[N],fa[N][18],dep[N];
LL dis[N],S,w[N],up[N];
struct edge{
int last,to;
edge(){}edge(int last,int to):last(last),to(to){}
}e[N*2];
void Add(int a,int b){
e[++edc]=edge(head[a],b),head[a]=edc;
e[++edc]=edge(head[b],a),head[b]=edc;
}
void dfs1(int u){
dis[u]=w[u]+dis[fa[u][0]],dep[u]=dep[fa[u][0]]+1;
rep(i,1,17) fa[u][i]=fa[fa[u][i-1]][i-1];
go(u)if(v^fa[u][0])
fa[v][0]=u,dfs1(v);
}
void dfs2(int u){
go(u)if(v^fa[u][0]){
dfs2(v);
if(up[u]==-1||dep[up[u]]>dep[up[v]]) up[u]=up[v];
}
if(up[u]==-1||dep[up[u]]>=dep[u]){
++ans;int tl=L,x=u;LL ts=S;
for(int i=17;~i;--i) if((1<<i)<=tl&&dis[x]-dis[fa[x][i]]<=ts){
ts-=dis[x]-dis[fa[x][i]];
tl-=(1<<i);
x=fa[x][i];
}
up[u]=x;
}
}
int main(){
scanf("%d%d%I64d",&n,&L,&S);
memset(up,-1,sizeof up);
rep(i,1,n) {
w[i]=gi();
if(w[i]>S) return puts("-1"),0;
}
rep(i,2,n) Add(i,gi());
dfs1(1);dfs2(1);
printf("%d\n",ans);
return 0;
}

[CF1059E]Split the Tree[贪心+树上倍增]的更多相关文章

  1. CF1059E Split the Tree(倍增)

    题意翻译 现有n个点组成一棵以1为根的有根树,第i个点的点权为wi,需将其分成若干条垂直路径使得每一个点当且仅当被一条垂直路径覆盖,同时,每条垂直路径长度不能超过L,点权和不能超过S,求最少需要几条垂 ...

  2. LUOGU P1084 疫情控制(二分+贪心+树上倍增)

    传送门 解题思路 比较神的一道题.首先发现是最小值问题,并且具有单调性,所以要考虑二分答案.其次有一个性质是军队越靠上越优,所以我们要将所有的军队尽量向上提,这一过程我们用倍增实现.发现这时有两种军队 ...

  3. [bzoj1977][BeiJing2010组队]次小生成树 Tree——树上倍增+lca

    Brief Description 求一个无向图的严格次小生成树. Algorithm Design 考察最小生成树的生成过程.对于一个非树边而言,如果我们使用这一条非树边去替换原MST的路径上的最大 ...

  4. luogu4180 次小生成树Tree 树上倍增

    题目:求一个无向图的严格次小生成树(即次小生成树的边权和严格小于最小生成树的边权和) 首先求出图中的最小生成树.任意加一条树外边都会导致环的出现.我们现在目标是在树外边集合B中,找到边b∈B,a∈b所 ...

  5. HDU 4822 Tri-war(LCA树上倍增)(2013 Asia Regional Changchun)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4822 Problem Description Three countries, Red, Yellow ...

  6. [Split The Tree][dfs序+树状数组求区间数的种数]

    Split The Tree 时间限制: 1 Sec  内存限制: 128 MB提交: 46  解决: 11[提交] [状态] [讨论版] [命题人:admin] 题目描述 You are given ...

  7. Luogu 1084 NOIP2012 疫情控制 (二分,贪心,倍增)

    Luogu 1084 NOIP2012 疫情控制 (二分,贪心,倍增) Description H 国有 n 个城市,这 n 个城市用 n-1 条双向道路相互连通构成一棵树, 1 号城市是首都, 也是 ...

  8. 【CodeForces】983 E. NN country 树上倍增+二维数点

    [题目]E. NN country [题意]给定n个点的树和m条链,q次询问一条链(a,b)最少被多少条给定的链覆盖.\(n,m,q \leq 2*10^5\). [算法]树上倍增+二维数点(树状数组 ...

  9. BNUOJ 52317 As Easy As Possible 树上倍增/主席树

    题目链接: https://acm.bnu.edu.cn/v3/problem_show.php?pid=52317 As Easy As Possible Case Time Limit: 1000 ...

随机推荐

  1. 控制台中寄宿WCF服务

    一.首先创建一个类库,用来定义WCF服务 修改服务代码定义,具体代码如下 // 注意: 使用"重构"菜单上的"重命名"命令,可以同时更改代码和配置文件中的接口名 ...

  2. 红帽7中firewall常用指令

    1.端口管理 (1)列出DMZ区域开放的端口 ~]#firewall-cmd --zone=dmz --list-ports (2)8080端口加入dmz区 ~]#firewall-cmd --zon ...

  3. MSSQL · 最佳实践 · 利用文件组实现冷热数据隔离备份方案

    文件组的基本知识点介绍完毕后,根据场景引入中的内容,我们将利用SQL Server文件组技术来实现冷热数据隔离备份的方案设计介绍如下. 设计分析 由于payment数据库过大,超过10TB,单次全量备 ...

  4. 微软撤回sharepoint 2013 sp1

    微软撤回sharepoint 2013 sp1, 现在已经不能下载32bits和64bits. 以下是我们发现的问题(未必一定和SP1有关) - Search SSA managed metadata ...

  5. Vuex状态管理详解

    什么是Vuex 专门为vue应用程序开发的状态管理模式,采用集中式存储管理应用的所有组件的状态(数据),以相应的规则保证状态以一种可预测的方式发生改变 Vuex的作用(什么样的情况下使用Vuex) 多 ...

  6. 一个web项目web.xml的配置中<context-param>配置作用

    <context-param>的作用: web.xml的配置中<context-param>配置作用 1. 启动一个WEB项目的时候,容器(如:Tomcat)会去读它的配置文件 ...

  7. WorldWind源码剖析系列:缓冲类Cache

    缓冲类Cache主要用于在最小的限制条件下保存从远程服务器通过网络下载下来的地理空间数据,以便当用户处于离线状态时能够使用这些已经缓冲好的数据.Google Earth也采用类似机制处理用户离线浏览漫 ...

  8. jmeter JDBC connection configuration配置方式

  9. HDU 1811 Rank of Tetris(并查集+拓扑排序 非常经典)

    Rank of Tetris Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)To ...

  10. jqgrid 批量启动所有行为可编辑状态

    有时,为操作方便,需要将jqgrid表格设置为一直处于编辑状态,用户只需要在对应的编辑区填写自己信息,不再频繁的去触发行编辑和保存. 参考代码如下: //$gridCase为传入jqgrid对象 fu ...