1.cv2.pyrDown(src)  对图片做向下采样操作,通常也可以做模糊化处理

参数说明:src表示输入的图片

2.cv2.pyrUp(src) 对图片做向上采样操作

参数说明:src表示输入的图片

高斯金字塔:分为两种情况:一种是向下采样,一种是向上采样

下采样的原理:先与Gi进行高斯卷积即高斯滤波,再将所有偶数行和列去除,实现行和列维度缩减的目的

代码:

第一步:读入图片

第二步:使用cv2.pyrDown进行高斯金字塔的下采样

第三步:使用自己的步骤做高斯金字塔的下采样,先对图像作高斯滤波,即与高斯内核卷积

第四步:将所有偶数行去除

第五步:将所有偶数列去除

import cv2
import numpy as np # 第一步:读入图片
img = cv2.imread('AM.png', 0)
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 第二步:使用cv2.pyrDown进行金字塔的下采样
down = cv2.pyrDown(img)
cv2.imshow('down', down)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 按照步骤编写
# 第三步:进行高斯滤波操作,即进行高斯卷积
guassin = cv2.GaussianBlur(img, (5, 5), 1)
# 第四步:去除矩阵的偶数行
guassin_x = []
rows, columns = guassin.shape[:2]
for i in range(rows):
if i % 2 == 1:
guassin_x.append(guassin[i, :]) guassin_x = np.array(guassin_x)
# 第五步:去除矩阵的偶数列
guassin_y = []
for i in range(columns):
if i % 2 == 1:
guassin_y.append(guassin_x[:, i]) guassin_y = np.array(guassin_y).T
cv2.imshow('guassin', guassin_y)
cv2.waitKey(0)

高斯金字塔进行上采样操作, 第一步先对使用0进行填充,扩大其维度,再进行高斯滤波,对滤波的结果乘与4,获得其近似值

代码:

第一步:图片读入

第二步:使用cv2.pyrUp对图像进行放大操作

第三步:使用自己的方法,先给偶数行加zeros

第四步:给偶数列加zeros

第五步:进行高斯滤波,将像素点分散开,最后乘于4,做近似截断处理

import cv2
import numpy as np # 第一步读取图片
img = cv2.imread('AM.png', 0)
print(img.shape)
# 第二步:使用cv2.pyrUp进行图像金字塔的上采样
Up = cv2.pyrUp(img)
cv2.imshow('up', Up)
cv2.waitKey(0)

# 第三步:使用自己的方法计算,在偶数行插入zero
rows_zeros = []
rows, columns = img.shape[:2] for i in range(2*rows):
if i % 2 == 1:
rows_zeros.append(np.zeros((1, columns)).astype(int).ravel())
else:
rows_zeros.append(img[int(i/2), :]) rows_zeros = np.array(rows_zeros) # 第四步:在偶数列插入zeros
columns_zeros = []
for i in range(2*columns):
if i % 2 == 1:
columns_zeros.append(np.zeros((rows*2, 1)).astype(int).ravel())
else:
columns_zeros.append(rows_zeros[:, int(i/2)]) columns_zeros = np.array(columns_zeros).T # 第五步:进行高斯卷积操作,乘于4倍后做近似处理
add_img_columns_g = np.round(cv2.GaussianBlur(columns_zeros, (5, 5), 1)).astype(int) * 4
frames = []
# 对于大于255的像素做截断操作
for i in range(add_img_columns_g.shape[0]):
frame = []
for j in add_img_columns_g[i, :]:
if j > 255:
frame.append(255)
else:
frame.append(j)
frames.append(frame)
frames = np.array(frames)

机器学习进阶-图像金字塔与轮廓检测-图像金字塔-(**高斯金字塔) 1.cv2.pyrDown(对图片做向下采样) 2.cv2.pyrUp(对图片做向上采样)的更多相关文章

  1. 机器学习进阶-图像金字塔与轮廓检测-轮廓检测 1.cv2.cvtColor(图像颜色转换) 2.cv2.findContours(找出图像的轮廓) 3.cv2.drawContours(画出图像轮廓) 4.cv2.contourArea(轮廓面积) 5.cv2.arcLength(轮廓周长) 6.cv2.aprroxPloyDP(获得轮廓近似) 7.cv2.boudingrect(外接圆)..

    1. cv2.cvtcolor(img, cv2.COLOR_BGR2GRAY) # 将彩色图转换为灰度图 参数说明: img表示输入的图片, cv2.COLOR_BGR2GRAY表示颜色的变换形式 ...

  2. 机器学习进阶-图像金字塔与轮廓检测-模板匹配(单目标匹配和多目标匹配)1.cv2.matchTemplate(进行模板匹配) 2.cv2.minMaxLoc(找出矩阵最大值和最小值的位置(x,y)) 3.cv2.rectangle(在图像上画矩形)

    1. cv2.matchTemplate(src, template, method)  # 用于进行模板匹配 参数说明: src目标图像, template模板,method使用什么指标做模板的匹配 ...

  3. 3. OpenCV-Python——图像梯度算法、边缘检测、图像金字塔与轮廓检测、直方图与傅里叶变换

    一.图像梯度算法 1.图像梯度-Sobel算子 dst = cv2.Sobel(src, ddepth, dx, dy, ksize) ddepth:图像的深度 dx和dy分别表示水平和竖直方向 ks ...

  4. 机器学习进阶-背景建模-(帧差法与混合高斯模型) 1.cv2.VideoCapture(进行视频读取) 2.cv2.getStructureElement(构造形态学的卷积) 3.cv2.createBackgroundSubtractorMOG2(构造高斯混合模型) 4.cv2.morpholyEx(对图像进行形态学的变化)

    1. cv2.VideoCapture('test.avi') 进行视频读取 参数说明:‘test.avi’ 输入视频的地址2. cv2.getStructureElement(cv2.MORPH_E ...

  5. 图像金字塔、高斯金字塔、差分金字塔(DOG金字塔)、尺度空间、DoG (Difference of Gaussian)角点检测

    [图像金字塔] 图像金字塔是一种以多分辨率来解释图像的结构,通过对原始图像进行多尺度像素采样的方式,生成N个不同分辨率的图像.把具有最高级别分辨率的图像放在底部,以金字塔形状排列,往上是一系列像素(尺 ...

  6. OpenCV图像金字塔:高斯金字塔、拉普拉斯金字塔与图片尺寸缩放

    这篇已经写得很好,真心给作者点个赞.题目都是直接转过来的,直接去看吧. Reference Link : http://blog.csdn.net/poem_qianmo/article/detail ...

  7. Sift中尺度空间、高斯金字塔、差分金字塔(DOG金字塔)、图像金字塔

    转自:https://blog.csdn.net/dcrmg/article/details/52561656 一. 图像金字塔 图像金字塔是一种以多分辨率来解释图像的结构,通过对原始图像进行多尺度像 ...

  8. 学习 opencv---(12)OpenCV 图像金字塔:高斯金字塔,拉普拉斯金字塔与图片尺寸缩放

    在这篇文章里,我们一起学习下 图像金字塔 的一些基本概念,如何使用OpenCV函数pyrUp和pyrDown 对图像进行向上和向下采样,以及了解专门用于缩放图像尺寸的resize函数的用法.此博文一共 ...

  9. 【OpenCV新手教程之十三】OpenCV图像金字塔:高斯金字塔、拉普拉斯金字塔与图片尺寸缩放

    本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/26157633 作者:毛星云(浅墨) ...

随机推荐

  1. ubuntu 安装php 扩展和查看扩展包

    利用ubuntu的软件包下载.安装工具:apt-get 输入下面的命令即可安装 php扩展库mcrypt.curl.gd库.mbstring.simplexml. apt-get install ph ...

  2. [Easyui - Grid]为easyui的datagrid、treegrid增加表头菜单,用于显示或隐藏列

    为easyui的datagrid.treegrid增加表头菜单,用于显示或隐藏列 /** * @author 孙宇 * * @requires jQuery,EasyUI * * 为datagrid. ...

  3. 以zookeeper为注册中心搭建spring cloud环境

    在spring cloud体系中,有多种手段实现注册中心,本例中采用zookeeper作为注册中心的角色.服务提供者向zookeeper注册,服务消费者从zookeeper中发现服务提供者的相关信息, ...

  4. [转][html5]网页横屏

    @@media screen and (orientation:portrait){ body{ transform: rotate(90deg); } } 将以上 CSS 加入网页,可以发现手机上查 ...

  5. 在linux下sh批处理文件调用java的方法

    解密 java -classpath collection-impl-0.0.1.jar com.ai.toptea.collection.message.DESEncrypt 1EFE4663895 ...

  6. win10 内置软件经常不用,还占空间?如何轻松卸载

    Step1:首先,在电脑桌面上点击左下角的开始菜单,在依次选择打开所有应用—Windows PowerShell,在Windows PowerShell上单击右键,选择以管理员身份运行: Step2: ...

  7. [UE4]函数和事件的区别

    一.函数有返回值,事件无返回值 二.函数调用会等待函数执行结果,事件调用只是触发但不会等待. 三.函数执行在同一个线程,事件执行在不同线程. 四.函数可以用局部变量,事件没有局部变量. 五.因为函数执 ...

  8. (转)CS域和PS域

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u013485792/article/details/50818356 CS域和PS域的区别: 1.基 ...

  9. crm 任务 状态

    ActivityPointer 取消状态:statecode = 2 statuscode = 6 已完成状态:statecode = 1 statuscode = 5

  10. linux 安装scala

    1. 下载scala 到scala官网下载scala https://www.scala-lang.org/download/,目前最新版本是2.12.8 wget https://downloads ...