1.cv2.pyrDown(src)  对图片做向下采样操作,通常也可以做模糊化处理

参数说明:src表示输入的图片

2.cv2.pyrUp(src) 对图片做向上采样操作

参数说明:src表示输入的图片

高斯金字塔:分为两种情况:一种是向下采样,一种是向上采样

下采样的原理:先与Gi进行高斯卷积即高斯滤波,再将所有偶数行和列去除,实现行和列维度缩减的目的

代码:

第一步:读入图片

第二步:使用cv2.pyrDown进行高斯金字塔的下采样

第三步:使用自己的步骤做高斯金字塔的下采样,先对图像作高斯滤波,即与高斯内核卷积

第四步:将所有偶数行去除

第五步:将所有偶数列去除

import cv2
import numpy as np # 第一步:读入图片
img = cv2.imread('AM.png', 0)
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 第二步:使用cv2.pyrDown进行金字塔的下采样
down = cv2.pyrDown(img)
cv2.imshow('down', down)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 按照步骤编写
# 第三步:进行高斯滤波操作,即进行高斯卷积
guassin = cv2.GaussianBlur(img, (5, 5), 1)
# 第四步:去除矩阵的偶数行
guassin_x = []
rows, columns = guassin.shape[:2]
for i in range(rows):
if i % 2 == 1:
guassin_x.append(guassin[i, :]) guassin_x = np.array(guassin_x)
# 第五步:去除矩阵的偶数列
guassin_y = []
for i in range(columns):
if i % 2 == 1:
guassin_y.append(guassin_x[:, i]) guassin_y = np.array(guassin_y).T
cv2.imshow('guassin', guassin_y)
cv2.waitKey(0)

高斯金字塔进行上采样操作, 第一步先对使用0进行填充,扩大其维度,再进行高斯滤波,对滤波的结果乘与4,获得其近似值

代码:

第一步:图片读入

第二步:使用cv2.pyrUp对图像进行放大操作

第三步:使用自己的方法,先给偶数行加zeros

第四步:给偶数列加zeros

第五步:进行高斯滤波,将像素点分散开,最后乘于4,做近似截断处理

import cv2
import numpy as np # 第一步读取图片
img = cv2.imread('AM.png', 0)
print(img.shape)
# 第二步:使用cv2.pyrUp进行图像金字塔的上采样
Up = cv2.pyrUp(img)
cv2.imshow('up', Up)
cv2.waitKey(0)

# 第三步:使用自己的方法计算,在偶数行插入zero
rows_zeros = []
rows, columns = img.shape[:2] for i in range(2*rows):
if i % 2 == 1:
rows_zeros.append(np.zeros((1, columns)).astype(int).ravel())
else:
rows_zeros.append(img[int(i/2), :]) rows_zeros = np.array(rows_zeros) # 第四步:在偶数列插入zeros
columns_zeros = []
for i in range(2*columns):
if i % 2 == 1:
columns_zeros.append(np.zeros((rows*2, 1)).astype(int).ravel())
else:
columns_zeros.append(rows_zeros[:, int(i/2)]) columns_zeros = np.array(columns_zeros).T # 第五步:进行高斯卷积操作,乘于4倍后做近似处理
add_img_columns_g = np.round(cv2.GaussianBlur(columns_zeros, (5, 5), 1)).astype(int) * 4
frames = []
# 对于大于255的像素做截断操作
for i in range(add_img_columns_g.shape[0]):
frame = []
for j in add_img_columns_g[i, :]:
if j > 255:
frame.append(255)
else:
frame.append(j)
frames.append(frame)
frames = np.array(frames)

机器学习进阶-图像金字塔与轮廓检测-图像金字塔-(**高斯金字塔) 1.cv2.pyrDown(对图片做向下采样) 2.cv2.pyrUp(对图片做向上采样)的更多相关文章

  1. 机器学习进阶-图像金字塔与轮廓检测-轮廓检测 1.cv2.cvtColor(图像颜色转换) 2.cv2.findContours(找出图像的轮廓) 3.cv2.drawContours(画出图像轮廓) 4.cv2.contourArea(轮廓面积) 5.cv2.arcLength(轮廓周长) 6.cv2.aprroxPloyDP(获得轮廓近似) 7.cv2.boudingrect(外接圆)..

    1. cv2.cvtcolor(img, cv2.COLOR_BGR2GRAY) # 将彩色图转换为灰度图 参数说明: img表示输入的图片, cv2.COLOR_BGR2GRAY表示颜色的变换形式 ...

  2. 机器学习进阶-图像金字塔与轮廓检测-模板匹配(单目标匹配和多目标匹配)1.cv2.matchTemplate(进行模板匹配) 2.cv2.minMaxLoc(找出矩阵最大值和最小值的位置(x,y)) 3.cv2.rectangle(在图像上画矩形)

    1. cv2.matchTemplate(src, template, method)  # 用于进行模板匹配 参数说明: src目标图像, template模板,method使用什么指标做模板的匹配 ...

  3. 3. OpenCV-Python——图像梯度算法、边缘检测、图像金字塔与轮廓检测、直方图与傅里叶变换

    一.图像梯度算法 1.图像梯度-Sobel算子 dst = cv2.Sobel(src, ddepth, dx, dy, ksize) ddepth:图像的深度 dx和dy分别表示水平和竖直方向 ks ...

  4. 机器学习进阶-背景建模-(帧差法与混合高斯模型) 1.cv2.VideoCapture(进行视频读取) 2.cv2.getStructureElement(构造形态学的卷积) 3.cv2.createBackgroundSubtractorMOG2(构造高斯混合模型) 4.cv2.morpholyEx(对图像进行形态学的变化)

    1. cv2.VideoCapture('test.avi') 进行视频读取 参数说明:‘test.avi’ 输入视频的地址2. cv2.getStructureElement(cv2.MORPH_E ...

  5. 图像金字塔、高斯金字塔、差分金字塔(DOG金字塔)、尺度空间、DoG (Difference of Gaussian)角点检测

    [图像金字塔] 图像金字塔是一种以多分辨率来解释图像的结构,通过对原始图像进行多尺度像素采样的方式,生成N个不同分辨率的图像.把具有最高级别分辨率的图像放在底部,以金字塔形状排列,往上是一系列像素(尺 ...

  6. OpenCV图像金字塔:高斯金字塔、拉普拉斯金字塔与图片尺寸缩放

    这篇已经写得很好,真心给作者点个赞.题目都是直接转过来的,直接去看吧. Reference Link : http://blog.csdn.net/poem_qianmo/article/detail ...

  7. Sift中尺度空间、高斯金字塔、差分金字塔(DOG金字塔)、图像金字塔

    转自:https://blog.csdn.net/dcrmg/article/details/52561656 一. 图像金字塔 图像金字塔是一种以多分辨率来解释图像的结构,通过对原始图像进行多尺度像 ...

  8. 学习 opencv---(12)OpenCV 图像金字塔:高斯金字塔,拉普拉斯金字塔与图片尺寸缩放

    在这篇文章里,我们一起学习下 图像金字塔 的一些基本概念,如何使用OpenCV函数pyrUp和pyrDown 对图像进行向上和向下采样,以及了解专门用于缩放图像尺寸的resize函数的用法.此博文一共 ...

  9. 【OpenCV新手教程之十三】OpenCV图像金字塔:高斯金字塔、拉普拉斯金字塔与图片尺寸缩放

    本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/26157633 作者:毛星云(浅墨) ...

随机推荐

  1. HTTP请求报文

    一个HTTP请求报文,有请求行request line.请求头部header.空行和请求数据组成.看下图可知: 1.请求行 请求行:请求方法.请求地址和协议版本. 请求方法 HTTP/1.1 定义的请 ...

  2. JAVA代码模板总结

    静态工厂方法+服务提供者框架模板 构造器模板 事件通知模板 单元素枚举类型singleton模块 私有构造器不可实例化类模板

  3. Ring0 - Lookaside结构

    由于频繁的申请,回收内存会导致在内存上产生大量的内存"空洞".这时使用Lookaside. 1.每次申请固定大小的内存. 2.申请和回收的操作十分频繁. 实现原理: 他先向wind ...

  4. [UE4]装饰器:Blackboard(装饰器的一种,不是黑板)

    装饰器Blackboard可以检查黑板的值是否满足期望的条件: 添加“Blackboard装饰器”:在组合或者任务节点上右键“添加装饰器...”,跟普通装饰器一样. Notify Observer:通 ...

  5. vue 父组件主动获取子组件的数据和方法 子组件主动获取父组件的数据和方法

    Header.vue <template> <div> <h2>我是头部组件</h2> <button @click="getParen ...

  6. 家庭版Windows设置远程连接

    家庭版Windows设置远程连接1. windows+R 打开运行,输入 regedit 打开注册表 2.依次打开路径 计算机\HKEY_LOCAL_MACHINE\SOFTWARE\Microsof ...

  7. but was actually of type 'com.sun.proxy.$Proxy101' 注入问题

    最近在用springboot搭建项目框架时,遇到了如下错误,查询了一番,原来是没有引入spring框架的aop包导致: 问题: ERROR o.s.test.context.TestContextMa ...

  8. Angular2 入门详解

    AngularJS 2 快速入门 npm是什么?   npm其实是Node.js Package Manager的简称,是Node.js包管理工具(package manager) 安装Node.js ...

  9. CRM 2016 IFrame 子页面执行 父页面函数

    CRM 中定义以下函数: windows.parent.functionname(){ //do somethion } IFrame 子页面调用 JS: windows.parent.functio ...

  10. saliency map [转]

    基于Keras实现的代码文档 (图+说明) "Deep Inside Convolutional Networks: Visualising Image Classification Mod ...