PCA(主成分分析)算法,主要用于数据降维,保留了数据集中对方差贡献最大的若干个特征来达到简化数据集的目的。

实现数据降维的步骤:

1、将原始数据中的每一个样本用向量表示,把所有样本组合起来构成一个矩阵,通常需对样本矩阵进行处理,得到中性化样本矩阵

2、求样本矩阵的协方差矩阵

3、求协方差矩阵的特征值和特征向量

4、将求出的特征向量按照特征值的大小进行组合形成一个映射矩阵。并根据指定的PCA保留的特征个数取出映射矩阵的前n行或者前n列作为最终的映射矩阵。

5、用映射矩阵对数据进行映射,达到数据降维的目的。

中心化样本矩阵:先让样本矩阵中心化,即每一维度减去该维度的均值,然后直接用新的到的样本矩阵乘上它的转置,然后除以(N-1)即可,如下:

 % 中心化样本矩阵,样本矩阵MySample是10*3大小的矩阵,repmat(mean(MySample),10,1)产生一个每行都是mean(Mysample),共10行
X = MySample – repmat(mean(MySample),10,1); %每一维度减去该维度的均值
%X=X-ones(size(X,1),1)*mean(X);这样同样可以达到每一维度减去该维度的均值的效果,相比上面那种,这种更通用,因为不须每次改写repmat中的第二个参数
C = (X’*X)/(size(X,1)-1)%新得到的矩阵X乘上的它的转置

PCA算法Matlab实现:

 function [newX,T,meanValue] = pca_row(X,CRate)
%每行是一个样本
%newX 降维后的新矩阵
%T 变换矩阵
%meanValue X每列均值构成的矩阵,用于将降维后的矩阵newX恢复成X
%CRate 贡献率
%计算中心化样本矩阵
meanValue=ones(size(X,1),1)*mean(X);
X=X-meanValue;%每个维度减去该维度的均值
C=X'*X/(size(X,1)-1);%计算协方差矩阵 %计算特征向量,特征值
[V,D]=eig(C);
%将特征向量按降序排序
[dummy,order]=sort(diag(-D));
V=V(:,order);%将特征向量按照特征值大小进行降序排列
d=diag(D);%将特征值取出,构成一个列向量
newd=d(order);%将特征值构成的列向量按降序排列 %取前n个特征向量,构成变换矩阵
sumd=sum(newd);%特征值之和
for j=1:length(newd)
  i=sum(newd(1:j,1))/sumd;%计算贡献率,贡献率=前n个特征值之和/总特征值之和
  if i>CRate%当贡献率大于95%时循环结束,并记下取多少个特征值
    cols=j;
    break;
  end
end
T=V(:,1:cols);%取前cols个特征向量,构成变换矩阵T
newX=X*T;%用变换矩阵T对X进行降维
end

测试数据:

>> test=[10 15 29;15 46 13;23 21 30;11 9 35;42 45 11;9 48 5;11 21 14;8 5 15;11 12 21;21 20 25]

test =

10 15 29
15 46 13
23 21 30
11 9 35
42 45 11
9 48 5
11 21 14
8 5 15
11 12 21
21 20 25

调用函数:

[newX,T,meanValue]=pca_row(test,0.9)%假设贡献率为90%

newX =

13.4627 -0.1472
-21.2616 -6.1205
4.7222 11.1751
20.7366 4.1128
-29.3539 16.6403
-24.3452 -15.3551
2.0237 -6.9416
17.2018 -7.6807
12.5972 -2.8162
4.2167 7.1330

T =

-0.3025 0.8750
-0.8672 -0.0881
0.3956 0.4760

meanValue =

16.1000 24.2000 19.8000
16.1000 24.2000 19.8000
16.1000 24.2000 19.8000
16.1000 24.2000 19.8000
16.1000 24.2000 19.8000
16.1000 24.2000 19.8000
16.1000 24.2000 19.8000
16.1000 24.2000 19.8000
16.1000 24.2000 19.8000
16.1000 24.2000 19.8000

将降维后得到的新矩阵newX恢复:

公式为X=newX*T'+meanValue

得到:

X =

11.8983 12.5383 25.0552
17.1770 43.1771 8.4762
24.4495 19.1203 26.9878
13.4252 5.8552 29.9604
39.5407 48.1891 16.1105
10.0297 46.6648 2.8603
9.4139 23.0567 17.2959
4.1753 9.9596 22.9479
9.8247 13.5240 23.4422
21.0656 19.9149 24.8636

可以看到与原X有些误差

对于该组测试数据当CRate设置为0.97时,恢复时可以100%恢复

参考资料:

1、PCA算法学习_1(OpenCV中PCA实现人脸降维),作者:tornadomeet

2、PCA算法学习_2(PCA理论的matlab实现),作者:tornadomeet

3、PCA(主成分分析)详解(写给初学者)结合matlab,作者:古剑寒

4、PCA降维算法总结以及matlab实现PCA(个人的一点理解),作者:watkins

PCA算法学习(Matlab实现)的更多相关文章

  1. 大约PCA算法学习总结

    文章来源:http://blog.csdn.net/xizhibei ============================= PCA,也就是说,PrincipalComponents Analys ...

  2. 【转】PCA算法学习_1(OpenCV中PCA实现人脸降维)

    前言: PCA是大家经常用来减少数据集的维数,同时保留数据集中对方差贡献最大的特征来达到简化数据集的目的.本文通过使用PCA来提取人脸中的特征脸这个例子,来熟悉下在oepncv中怎样使用PCA这个类. ...

  3. OpenCV学习(35) OpenCV中的PCA算法

    PCA算法的基本原理可以参考:http://www.cnblogs.com/mikewolf2002/p/3429711.html     对一副宽p.高q的二维灰度图,要完整表示该图像,需要m = ...

  4. 我所认识的PCA算法的princomp函数与经历 (基于matlab)

    我接触princomp函数,主要是因为实验室的项目需要,所以我一接触的时候就希望快点学会怎么用. 项目中需要利用PCA算法对大量数据进行降维. 简介:主成分分析 ( Principal Compone ...

  5. PCA and kmeans MATLAB实现

    MATLAB基础知识 l  Imread:  读取图片信息: l  axis:轴缩放:axis([xmin xmax ymin ymax zmin zmax cmin cmax]) 设置 x.y 和  ...

  6. 模式识别(1)——PCA算法

    作者:桂. 时间:2017-02-26  19:54:26 链接:http://www.cnblogs.com/xingshansi/articles/6445625.html 声明:转载请注明出处, ...

  7. 主成分分析(PCA)学习笔记

    这两天学习了吴恩达老师机器学习中的主成分分析法(Principal Component Analysis, PCA),PCA是一种常用的降维方法.这里对PCA算法做一个小笔记,并利用python完成对 ...

  8. OTSU算法学习 OTSU公式证明

    OTSU算法学习   OTSU公式证明 1 otsu的公式如下,如果当前阈值为t, w0 前景点所占比例 w1 = 1- w0 背景点所占比例 u0 = 前景灰度均值 u1 = 背景灰度均值 u = ...

  9. ISODATA聚类算法的matlab程序

    ISODATA聚类算法的matlab程序 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 参考:Kmeans及ISODATA算法的matlab实现 算法 ...

随机推荐

  1. sublime text 文件打开时回调一些函数

    需求:公司服务端脚本以 .s 结尾的文件,也按 js 语法识别,方便查看函数定义. 每次都 ss:js 比较麻烦,所以写个插件. import sublime, sublime_plugin clas ...

  2. underscore.js源码研究(1)

    概述 很早就想研究underscore源码了,虽然underscore.js这个库有些过时了,但是我还是想学习一下库的架构,函数式编程以及常用方法的编写这些方面的内容,又恰好没什么其它要研究的了,所以 ...

  3. Selenium3 + Python3自动化测试系列三——控制浏览器操作

    控制浏览器操作 控制浏览器窗口大小 在测试过程中,我们在打开浏览器后,根据需求可自定义调整浏览器的尺寸大小.WebDriver提供了set_window_size()方法来设置浏览器的大小. 如果页面 ...

  4. vue教程1-06 v-bind属性、class和style

    vue教程1-06 属性.class和style 一.属性 属性: v-bind:src="" width/height/title.... 简写: :src="&quo ...

  5. mysql 常用操作命令

    mysql官网指南:http://dev.mysql.com/doc/refman/5.1/zh/sql-syntax.html 1.导出整个数据库mysqldump -u 用户名 -p --defa ...

  6. android studio 一直卡在Gradle:Build Running的解决办法

    转:android studio 一直卡在Gradle:Build Running的解决办法   在使用AS开发安卓应用程序的时候经常会遇到Gradle build running一直在运行甚至卡死的 ...

  7. 继承extends、super、this、方法重写overiding、final、代码块_DAY08

    1:Math类的随机数(掌握) 类名调用静态方法.  包:java.lang 类:Math 方法:public static double random(): Java.lang包下的类是不用导包就可 ...

  8. C# 多线程七之Parallel

    1.简介 关于Parallel不想说太多,因为它是Task的语法糖,至少我是这么理解的,官方文档也是这么说的,它本身就是基本Task的.假设我们有一个集合,不管是什么集合,我们要遍历它,首先想到的是F ...

  9. vue 运行npm run dev报错

    npm run dev运行时报错,原因有很多. 一般用下面这种方法都能解决的. 最简单粗暴的方法: 1.删除依赖包node_modules 2.然后重新npm install就行了 (如果这步报错了, ...

  10. Chapter 3 Phenomenon——24

    My mom was in hysterics, of course. 我的母亲当时是歇斯底里的发疯了. I had to tell her I felt fine at least thirty t ...