PCA(主成分分析)算法,主要用于数据降维,保留了数据集中对方差贡献最大的若干个特征来达到简化数据集的目的。

实现数据降维的步骤:

1、将原始数据中的每一个样本用向量表示,把所有样本组合起来构成一个矩阵,通常需对样本矩阵进行处理,得到中性化样本矩阵

2、求样本矩阵的协方差矩阵

3、求协方差矩阵的特征值和特征向量

4、将求出的特征向量按照特征值的大小进行组合形成一个映射矩阵。并根据指定的PCA保留的特征个数取出映射矩阵的前n行或者前n列作为最终的映射矩阵。

5、用映射矩阵对数据进行映射,达到数据降维的目的。

中心化样本矩阵:先让样本矩阵中心化,即每一维度减去该维度的均值,然后直接用新的到的样本矩阵乘上它的转置,然后除以(N-1)即可,如下:

 % 中心化样本矩阵,样本矩阵MySample是10*3大小的矩阵,repmat(mean(MySample),10,1)产生一个每行都是mean(Mysample),共10行
X = MySample – repmat(mean(MySample),10,1); %每一维度减去该维度的均值
%X=X-ones(size(X,1),1)*mean(X);这样同样可以达到每一维度减去该维度的均值的效果,相比上面那种,这种更通用,因为不须每次改写repmat中的第二个参数
C = (X’*X)/(size(X,1)-1)%新得到的矩阵X乘上的它的转置

PCA算法Matlab实现:

 function [newX,T,meanValue] = pca_row(X,CRate)
%每行是一个样本
%newX 降维后的新矩阵
%T 变换矩阵
%meanValue X每列均值构成的矩阵,用于将降维后的矩阵newX恢复成X
%CRate 贡献率
%计算中心化样本矩阵
meanValue=ones(size(X,1),1)*mean(X);
X=X-meanValue;%每个维度减去该维度的均值
C=X'*X/(size(X,1)-1);%计算协方差矩阵 %计算特征向量,特征值
[V,D]=eig(C);
%将特征向量按降序排序
[dummy,order]=sort(diag(-D));
V=V(:,order);%将特征向量按照特征值大小进行降序排列
d=diag(D);%将特征值取出,构成一个列向量
newd=d(order);%将特征值构成的列向量按降序排列 %取前n个特征向量,构成变换矩阵
sumd=sum(newd);%特征值之和
for j=1:length(newd)
  i=sum(newd(1:j,1))/sumd;%计算贡献率,贡献率=前n个特征值之和/总特征值之和
  if i>CRate%当贡献率大于95%时循环结束,并记下取多少个特征值
    cols=j;
    break;
  end
end
T=V(:,1:cols);%取前cols个特征向量,构成变换矩阵T
newX=X*T;%用变换矩阵T对X进行降维
end

测试数据:

>> test=[10 15 29;15 46 13;23 21 30;11 9 35;42 45 11;9 48 5;11 21 14;8 5 15;11 12 21;21 20 25]

test =

10 15 29
15 46 13
23 21 30
11 9 35
42 45 11
9 48 5
11 21 14
8 5 15
11 12 21
21 20 25

调用函数:

[newX,T,meanValue]=pca_row(test,0.9)%假设贡献率为90%

newX =

13.4627 -0.1472
-21.2616 -6.1205
4.7222 11.1751
20.7366 4.1128
-29.3539 16.6403
-24.3452 -15.3551
2.0237 -6.9416
17.2018 -7.6807
12.5972 -2.8162
4.2167 7.1330

T =

-0.3025 0.8750
-0.8672 -0.0881
0.3956 0.4760

meanValue =

16.1000 24.2000 19.8000
16.1000 24.2000 19.8000
16.1000 24.2000 19.8000
16.1000 24.2000 19.8000
16.1000 24.2000 19.8000
16.1000 24.2000 19.8000
16.1000 24.2000 19.8000
16.1000 24.2000 19.8000
16.1000 24.2000 19.8000
16.1000 24.2000 19.8000

将降维后得到的新矩阵newX恢复:

公式为X=newX*T'+meanValue

得到:

X =

11.8983 12.5383 25.0552
17.1770 43.1771 8.4762
24.4495 19.1203 26.9878
13.4252 5.8552 29.9604
39.5407 48.1891 16.1105
10.0297 46.6648 2.8603
9.4139 23.0567 17.2959
4.1753 9.9596 22.9479
9.8247 13.5240 23.4422
21.0656 19.9149 24.8636

可以看到与原X有些误差

对于该组测试数据当CRate设置为0.97时,恢复时可以100%恢复

参考资料:

1、PCA算法学习_1(OpenCV中PCA实现人脸降维),作者:tornadomeet

2、PCA算法学习_2(PCA理论的matlab实现),作者:tornadomeet

3、PCA(主成分分析)详解(写给初学者)结合matlab,作者:古剑寒

4、PCA降维算法总结以及matlab实现PCA(个人的一点理解),作者:watkins

PCA算法学习(Matlab实现)的更多相关文章

  1. 大约PCA算法学习总结

    文章来源:http://blog.csdn.net/xizhibei ============================= PCA,也就是说,PrincipalComponents Analys ...

  2. 【转】PCA算法学习_1(OpenCV中PCA实现人脸降维)

    前言: PCA是大家经常用来减少数据集的维数,同时保留数据集中对方差贡献最大的特征来达到简化数据集的目的.本文通过使用PCA来提取人脸中的特征脸这个例子,来熟悉下在oepncv中怎样使用PCA这个类. ...

  3. OpenCV学习(35) OpenCV中的PCA算法

    PCA算法的基本原理可以参考:http://www.cnblogs.com/mikewolf2002/p/3429711.html     对一副宽p.高q的二维灰度图,要完整表示该图像,需要m = ...

  4. 我所认识的PCA算法的princomp函数与经历 (基于matlab)

    我接触princomp函数,主要是因为实验室的项目需要,所以我一接触的时候就希望快点学会怎么用. 项目中需要利用PCA算法对大量数据进行降维. 简介:主成分分析 ( Principal Compone ...

  5. PCA and kmeans MATLAB实现

    MATLAB基础知识 l  Imread:  读取图片信息: l  axis:轴缩放:axis([xmin xmax ymin ymax zmin zmax cmin cmax]) 设置 x.y 和  ...

  6. 模式识别(1)——PCA算法

    作者:桂. 时间:2017-02-26  19:54:26 链接:http://www.cnblogs.com/xingshansi/articles/6445625.html 声明:转载请注明出处, ...

  7. 主成分分析(PCA)学习笔记

    这两天学习了吴恩达老师机器学习中的主成分分析法(Principal Component Analysis, PCA),PCA是一种常用的降维方法.这里对PCA算法做一个小笔记,并利用python完成对 ...

  8. OTSU算法学习 OTSU公式证明

    OTSU算法学习   OTSU公式证明 1 otsu的公式如下,如果当前阈值为t, w0 前景点所占比例 w1 = 1- w0 背景点所占比例 u0 = 前景灰度均值 u1 = 背景灰度均值 u = ...

  9. ISODATA聚类算法的matlab程序

    ISODATA聚类算法的matlab程序 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 参考:Kmeans及ISODATA算法的matlab实现 算法 ...

随机推荐

  1. Azure DevOps Server(TFS 2019) 中的SonarQube扫描任务出现错误:AppTest.java can't be indexed twice

    SonarQube错误描述 将一个Maven示例程序导入到Azure DevOps的待库中,执行SonarQube扫描过程时, DevOps Server提示下面的错误信息: [ERROR] Fail ...

  2. .net图表之ECharts随笔06-这才是最简单的

    今天搞柱形图的时候,发现了一个更简单的用法.那就是直接使用带all的那个js文件 基本步骤: 1.为ECharts准备一个具备大小(宽高)的Dom 2.ECharts的js文件引入(echarts-a ...

  3. linux02

    Linux Day 21.命令命令格式: chagrp chgrp命令用于变更文件或目录的所属群组. cd change directory 切换目录 格式:cd 路径 ls list 显示当前目录信 ...

  4. wp推送消息笔记

    最近想给应用添加推送消息,主要是toast消息,所以就打算去了解一下wp消息推送机制以及实现方法,过程中,查了许多资料,也遇到过一些问题,做完后,自己就做个小笔记,总结一下,好记性不如烂笔头嘛,以后可 ...

  5. C#6.0语言规范(十六) 异常

    C#中的异常提供了一种结构化,统一且类型安全的方法来处理系统级和应用程序级错误条件.C#中的异常机制与C ++的异常机制非常相似,但有一些重要的区别: 在C#中,所有异常必须由派生自的类类型的实例表示 ...

  6. 【Anaconda】:科学计算的Python发行版

    [背景] Python易用,但包管理和Python不同版本的问题比较头疼,特别是当你使用Windows的时候.为了解决这些问题,有不少发行版的Python,比如WinPython.Anaconda等, ...

  7. Docker - 基础讲义

    Docker Docker - 官网 Docker - Hub GitHub - Docker dockerinfo Docker中文社区 Docker入门教程 Docker从入门到实践 虚拟化技术 ...

  8. [umbraco] 数据结构

    我想此图就能说明一切了,不需要再废话了

  9. Eclipse的使用与Oblect类的常用方法_DAY11

    一.Java开发工具的使用 A:notepad windows自带的记事本. B:高级记事本 Editplus Notepad++ UE sublime2 C:集成开发工具(IDE) 开发和运行. E ...

  10. Entity framework 预热

    Entity framework  预热 对于在应用程序中定义的每个DbContext类型,在首次使用时,Entity Framework都会根据数据库中的信息在内存生成一个映射视图(mapping ...