Hadoop中使用SDN的带宽感知调度:大数据的一种新趋势

Abstract:

为了处理大规模的数据,提出了基于Hadoop框架的MapReduce,在Hadoop系统中,有一种叫做NP完全最小(NP-complete minimum)制造跨度问题(make span prlblem)。一种解决办法是在数据本地节点上分配任务来避免链路占用;很多用于data locality 的方法被提出,例如HDS和BAR。可是它们都有其缺点:要么忽略全局视图中的任务分配,要么忽略可用带宽作为调度的基础。
于是作者就提出了一种基于SDN的启发式带宽感知任务调度算法(简称BASS),将Hadoop和SDN相结合。
根据作者所说,BASS是第一个探索出SDN在大数据处理的作业调度的优势,并指出其是大规模数据处理的新趋势。
索引: Bandwidth-aware,big data, Hadoop, cheduling, software-defined networking(SDN).


concurrently 同时地
implementation 成就,贯彻
assign 分派,选派
scarce 缺乏的、罕见的
methodology 原则、方法
disregard 漠视、忽视
heuristic 启发式的、探索的
optimized 最佳化的
exploit 开采、开拓

Content

I. I NTRODUCTION

开头便介绍了SDN和big data的好处,逐渐成了现今发展的趋势。
随着大数据处理和SDN的发展,那问题就来了:是否可以用于处理最小制造跨度问题(thr minimum make span issue)呢?是否可以将SDN的带宽控制能力和Hadoop系统相结合来探索一种优化的任务调度方案?如图1所示的问号上:


the NP-complete minimum makespan problem:NP完全最小完工时间问题
deploy 部署
automation 自动化
multicast 多播、多点传送
deterministic 确定性的
innovative 革新的,创新的
Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。
P类问题:可以在多项式时间内求解出来结果的。
NP类问题:无法直接计算得到的,例如只能靠猜算得知质数。
生成问题的一个解通常比验证一个给定的解时间花费要多得多。
NP-完全问题(NPC问题):既然给定一个结果我们可以快速利用内部只是进行验证是否正确,那么反过来想,是否存在一个确定性的算法,可以在多项式的时间内, 直接算出或搜寻出正确的答案呢?
optimized 最佳化的
agility 敏捷,活泼
utilize 使用,利用
scarce 缺乏的,罕见的
parameter 参数
outperform 胜过,做得更好

文章的主要贡献如下:
1. 将the make span 形式化,并提出了一种带宽分配的TS方案;
2. 提出了一种带宽感知的任务调度器BASS,其性能优于以往所有相关算法;
3. 用了几个例子和实验来证明BASS的有效性。
文章的组织如下: Section II 回顾一些相关工作,Section III 对Hadoop集群中的调度问题进行了形式化的描述, Section IV 提出了基于SDN的带宽感知调度器BASS并给出了详细的示例说明, Section V 说了实验的细节,Section VI 总结全文并展望未来。


formalize 使形式化
exploit 开采、开拓
extensive 广阔的、广大的

II. RELATED WORK

Hadoop默认调度程序会搜索data local tasks并将它们分配给空闲节点,但这会增加作业完成时间。Matei建议延迟调度,已解决数据局部性和公平性的冲突,但是这会带来利用不足和不稳定的情况。Tan等人发现map tasks 和reduce tasks 并没很好地共同优化,这就会造成任务调度饥饿以及不利的数据局部性。于是就提出说能不能将两者很好地结合一下,但优于Hadoop中是假定所有节点都是专用于单个用户的,因此也无法保证高性能…作者罗列了很多文章提出的一些方法, 并说明了它们的局限性。

III. PROBLEM FORMALIZATION

定义了一些符号,如表1所示:

然后是一堆公式的集合。

IV. SDN-BASED BANDWIDTH-AWARE SCHEDULING IN HADOOP FOR BIG DATA PROCESSING

A. TS Bandwidth Allocation
B. BASS: Bandwidth-Aware Scheduling With SDN in Hadoop

V. EXPERIMENTS FOR PERFORMANCE EVALUATION

A. Experimental Setup
B. Experimental Results

VI.CONCLUSION AND EXPECTATIONS

本文利用SDN并充分考虑链路带宽,以提高大数据处理的性能。本文首先对Hadoop中的makespan问题进行了形式化描述,并提出了一种带宽分配的TS方案,可以以灵活的方式分配任务。最后,作者给出了实例,并实现了扩展的实际实验,证明了BASS的有效性。


utilize 利用,使用
exploit 开采,开拓
formalize 使正式
allocation 分配
extensive 广阔的
cluster 丛、群
evolvement 发展,进化
scalability 可测量性

PS:中间的一些具体实现以及一些公式没有看懂.

《Bandwidth-Aware Scheduling With SDN in Hadoop:A New Trend for Big Data》--2017的更多相关文章

  1. 《IM开发新手入门一篇就够:从零开发移动端IM》

        登录 立即注册 TCP/IP详解 资讯 动态 社区 技术精选 首页   即时通讯网›专项技术区›IM开发新手入门一篇就够:从零开发移动端IM   帖子 打赏 分享 发表评论162     想开 ...

  2. [Spark] Spark 3.0 Accelerator Aware Scheduling - GPU

    Ref: Spark3.0 preview预览版尝试GPU调用(本地模式不支持GPU) 预览版本:https://archive.apache.org/dist/spark/spark-3.0.0-p ...

  3. 《深入理解Spark:核心思想与源码分析》(前言及第1章)

    自己牺牲了7个月的周末和下班空闲时间,通过研究Spark源码和原理,总结整理的<深入理解Spark:核心思想与源码分析>一书现在已经正式出版上市,目前亚马逊.京东.当当.天猫等网站均有销售 ...

  4. 《深入理解Spark:核心思想与源码分析》(第2章)

    <深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析> ...

  5. 《深入理解Spark:核心思想与源码分析》一书正式出版上市

    自己牺牲了7个月的周末和下班空闲时间,通过研究Spark源码和原理,总结整理的<深入理解Spark:核心思想与源码分析>一书现在已经正式出版上市,目前亚马逊.京东.当当.天猫等网站均有销售 ...

  6. 《深入理解Spark:核心思想与源码分析》正式出版上市

    自己牺牲了7个月的周末和下班空闲时间,通过研究Spark源码和原理,总结整理的<深入理解Spark:核心思想与源码分析>一书现在已经正式出版上市,目前亚马逊.京东.当当.天猫等网站均有销售 ...

  7. 《Spark大数据处理:技术、应用与性能优化 》

    基本信息 作者: 高彦杰 丛书名:大数据技术丛书 出版社:机械工业出版社 ISBN:9787111483861 上架时间:2014-11-5 出版日期:2014 年11月 开本:16开 页码:255 ...

  8. 《Spark大数据处理:技术、应用与性能优化》【PDF】 下载

    内容简介 <Spark大数据处理:技术.应用与性能优化>根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,以及BDAS生态系统的相关技 ...

  9. 《Spark大数据处理:技术、应用与性能优化》【PDF】

    内容简介 <Spark大数据处理:技术.应用与性能优化>根据最新技术版本,系统.全面.详细讲解Spark的各项功能使用.原理机制.技术细节.应用方法.性能优化,以及BDAS生态系统的相关技 ...

随机推荐

  1. JDBC中的SPI实现

    DriverManger加载时候会调用如下方法: 关键代码:java.sql.DriverManager#loadInitialDrivers 然后 有时间整理一下

  2. Metabase在Windows下的开发环境配置

    Metabase在Windows下的开发环境配置 */--> pre.src {background-color: #292b2e; color: #b2b2b2;} Metabase在Wind ...

  3. Python - for 循环

    Python 3  - for 循环 这次将为大家介绍 Python 3 中的 for 循环语句的使用 for 循环的一般格式如下: for <variable> in <seque ...

  4. cocoapods 报错

    1.[!] ERROR: Parsing unable to continue due to parsing error: contained in the file located at xxx/x ...

  5. Android自定义布局的背景在多分辨率的情况下设置fill_parent时背景不能够横向全屏的问题解决

    问题描述:最近做了一个自定义的控件LinearLayout就是公用的底部菜单条,在指定分辨率下(例如:480x800,480x854)下背景是正常的,但是当程序运行到非指定(默认)的分辨率下就不正常了 ...

  6. Excel frequency函数

    计算连续次数最常用的函数就是FREQUENCY,下面就这个函数在计算连续次数的应用做一个详细图解.首先,我们需要了解一下FREQUENCY函数的计算原理.    FREQENCY(数据区域,用于设置区 ...

  7. Cannot connect to the Docker daemon at unix:///var/run/docker.sock.问题解决

    出现Cannot connect to the Docker daemon at unix:///var/run/docker.sock时,先用tail -5f /var/log/upstart/do ...

  8. 20155310 《网络攻防》Exp4 恶意代码分析

    20155310 <网络攻防>Exp4 恶意代码分析 基础问题 1.如果在工作中怀疑一台主机上有恶意代码,但只是猜想,所有想监控下系统一天天的到底在干些什么.请设计下你想监控的操作有哪些, ...

  9. Exp1 PC平台逆向破解(5)M

    Exp1 PC平台逆向破解(5)M [ 直接修改程序机器指令,改变程序执行流程] 用命令cp pwn1 20155320备份pwn1 输入objdump -d 20155320反汇编,找到call指令 ...

  10. POJ1807&&1276

    DP专题下的背包专题 其实就是PJ的那些东西了 主流的背包有三种:01背包,完全背包和多重背包 其中01背包和完全背包的转移就比较经典了,而多重背包也是在前两者基础上演变一下即可 1837 题意:有一 ...