KNN是通过测量不同特征值之间的距离进行分类。它的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别,其中K通常是不大于20的整数。KNN算法中,所选择的邻居都是已经正确分类的对象。该方法在定类决策上只依据最邻近的一个或者几个样本的类别来决定待分样本所属的类别。

其算法的描述为:

1)计算测试数据与各个训练数据之间的距离;

2)按照距离的递增关系进行排序;

3)选取距离最小的K个点;

4)确定前K个点所在类别的出现频率;

5)返回前K个点中出现频率最高的类别作为测试数据的预测分类。

应用1:自己编写knn算法如下:

import pandas as pd
import numpy as np '''
约会样本数据说明datingTestSet.txt, 以tab键分开:
1、FlyMiles: 每年获得的飞行常客里程数;
2、PlayTime: 玩视频游戏所耗费的时间百分比
3、IceCream: 每周消费的冰淇淋公斤数
4、对约会对象的感觉
'''
#url表示数据文件存放的地址
url = 'Data/datingTestSet.txt' data = pd.read_table(url, sep='\t', header=None, names=['FlyMiles', 'PlayTime', 'IceCream', 'LikeDegree'])
#将LikeDegree一列由字符串转化为数字
like_mapping = {label: idx for idx, label in enumerate(np.unique(data['LikeDegree']))}
data['LikeDegree'] = data['LikeDegree'].map(like_mapping) #归一化
def autoNorm(data):
normal = (data - data.min()) / (data.max() - data.min())
scope = data.max() - data.min()
min = data.min()
return normal, scope, min # knn算法
def knn(inX, normal, label, k):
data_sub = normal - inX
data_square = data_sub.applymap(np.square)
data_sum = data_square.sum(axis=1)
data_sqrt = data_sum.map(np.sqrt)
dis_sort = data_sqrt.argsort()
#加上测试数numTest
k_label = label[dis_sort[:k] + 200]
label_sort = k_label.value_counts()
res_label = label_sort.index[0]
return res_label #测试结果
def datingTest():
normal, scope, min = autoNorm(data[['FlyMiles', 'PlayTime', 'IceCream']])
label = data.iloc[:, -1]
m = normal.shape[0]
numTest = int(m * 0.2)
errorCount = 0.0
for i in range(numTest):
result = knn(normal.iloc[i, :], normal.iloc[numTest : m, :], label[numTest : m], 3)
print("the classifier came back with: %d, the real answer is: %d" % (result, label[i]))
if(result != label[i]):
errorCount += 1.0
print("the total error rate is: %f" % (errorCount / float(numTest))) datingTest()

应用2:利用sklearn库函数

import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier data = pd.read_table('Data/datingTestSet.txt', sep='\t', header=None, names=['FlyMiles', 'PlayTime', 'IceCream', 'LikeDegree'])
like_mapping = {label: idx for idx, label in enumerate(np.unique(data['LikeDegree']))}
data['LikeDegree'] = data['LikeDegree'].map(like_mapping)
X = data.iloc[:, 0:3]
y = data.iloc[:, -1] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=32)
knn = KNeighborsClassifier(n_neighbors=5)
knn.fit(X_train, y_train)
right_rate = knn.score(X_test, y_test)
print('the right rate is: %f' % right_rate)

大数据-KNN算法的更多相关文章

  1. 大数据排序算法:外部排序,bitmap算法;大数据去重算法:hash算法,bitmap算法

    外部排序算法相关:主要用到归并排序,堆排序,桶排序,重点是先分成不同的块,然后从每个块中找到最小值写入磁盘,分析过程可以看看http://blog.csdn.net/jeason29/article/ ...

  2. Scala 大数据 常用算法收集

    一:IP转数字,用于比大小,用在求IP段范围中 def ip2Long(ip: String): Long = { val fragments = ip.split("[.]") ...

  3. 《零起点,python大数据与量化交易》

    <零起点,python大数据与量化交易>,这应该是国内第一部,关于python量化交易的书籍. 有出版社约稿,写本量化交易与大数据的书籍,因为好几年没写书了,再加上近期"前海智库 ...

  4. 后Hadoop时代的大数据架构(转)

    原文:http://zhuanlan.zhihu.com/donglaoshi/19962491 作者: 董飞       提到大数据分析平台,不得不说Hadoop系统,Hadoop到现在也超过10年 ...

  5. 年度钜献,108个大数据文档PDF开放下载

    1.大数据的开放式创新——吴甘沙 相关阅读:[PPT]吴甘沙:让不同领域的数据真正流动.融合起来,才能释放大数据的价值 下载:大数据的开放式创新——吴甘沙.pdf 2.微软严治庆——让大数据为每个人服 ...

  6. SparkSQL大数据实战:揭开Join的神秘面纱

    本文来自 网易云社区 . Join操作是数据库和大数据计算中的高级特性,大多数场景都需要进行复杂的Join操作,本文从原理层面介绍了SparkSQL支持的常见Join算法及其适用场景. Join背景介 ...

  7. 后Hadoop时代的大数据架构

    提到大数据分析平台,不得不说Hadoop系统,Hadoop到现在也超过10年的历史了,很多东西发生了变化,版本也从0.x进化到目前的2.6版本.我把2012年后定义成后Hadoop平台时代,这不是说不 ...

  8. 从技术 Leader 的招聘需求看,如何转岗为当前紧缺的大数据相关人才?

    前段时间,跟候选人聊天的时候,一个有多年工作经验的资深 iOS 工程师告诉我,他最近正在学习 Machine Learning 相关的知识.他觉得,对于程序员来说,技术进步大大超过世人的想象,如果你不 ...

  9. 带你装B,带你飞的大数据时代

    我接触过的大数据有: 1.美国棱镜计划 2.前几天新闻报道的,苹果公司窃取用户隐私 3.百度的用户搜素习惯统计分析 4.淘宝的用户购物习惯分析,智能推荐宝贝 5.浏览器的智能标签页 ... 最想了解的 ...

随机推荐

  1. 【Flutter学习】基本组件之图片组件Image

    一,概述 Image(图片组件)是显示图像的组件,一个显示图片的widget,支持图像格式:JPEG,PNG,GIF,动画GIF,WebP,动画WebP,BMP和WBMP. Image组件有多种构造函 ...

  2. delphi下运行vbscript脚本

    简单一个vb脚本,功能为打开被限制的注册表.Set wso = CreateObject("WScript.Shell")wso.RegWrite "HKEY_CURRE ...

  3. mysql之分组

    1.创建分组 group by SELECT vend_id, COUNT(*) AS num_prods FROM productsGROUP BY vend_id; 在where字句之后,在ord ...

  4. 【BZOJ1084】dp

    题目很简单 分析蛮无聊的一道题.状态转移十分显然然后就做完了. #include <bits/stdc++.h>#define sc(n) scanf("%d",&am ...

  5. Android开发常用的Intent的URI及示例

    参考资料:http://www.oschina.net/code/snippet_166763_6502 //以下是常用到的Intent的URI及其示例,包含了大部分应用中用到的共用Intent. / ...

  6. (转)ubuntu下如何安装使用SSH?

    转:http://os.51cto.com/art/201109/291634.htm ubuntu默认并没有安装ssh服务,如果通过ssh链接ubuntu(比如使用securecrt客户端来访问ub ...

  7. http://elasticsearch-py.readthedocs.io/en/master/api.html

    API Documentation All the API calls map the raw REST api as closely as possible, including the disti ...

  8. 破解极验(geetest)验证码

      破解极验(geetest)验证码 这是两年前的帖子: http://www.v2ex.com/t/138479 一个月前的破解程序,我没用过 asp.net ,不知道是不是真的破解了, demo ...

  9. Dubbo入门到精通学习笔记(四):持续集成管理平台之Maven私有库和本地库的安装与配置

    文章目录 介绍 Maven私有库和本地库的安装与配置 Nexus安装 Nexus 配置(登录后) 介绍 如果构建的Maven项目本地仓库没有对应的依赖包,那么就会去Nexus私服去下载, 那么如果Ne ...

  10. 互联网大厂高频重点面试题 (第2季)JUC多线程及高并发

    本期内容包括 JUC多线程并发.JVM和GC等目前大厂笔试中会考.面试中会问.工作中会用的高频难点知识.斩offer.拿高薪.跳槽神器,对标阿里P6的<尚硅谷_互联网大厂高频重点面试题(第2季) ...