转自知乎

这货就是基于 SE-Net [5]中的 Squeeze-and-Excitation module 来进行进一步拓展

具体来说,文中把 channel-wise attention 看成是教网络 Look 'what’;而spatial attention 看成是教网络 Look 'where',所以它比 SE Module 的主要优势就多了后者

------------------------------------

我们先看看 SE-module:

SE-module

流程:

  1. 将输入特征进行 Global AVE pooling,得到 11 Channel

  2. 然后bottleneck特征交互一下,先压缩 channel数,再重构回channel数

  3. 最后接个 sigmoid,生成channel 间0~1的 attention weights,最后 scale 乘回原输入特征

-----------------------------------

再看看 CBAM :

CBAM

Channel Attention Module,基本和SE-module 是一致的,就额外加入了 Maxpool 的 branch。在 Sigmoid 前,两个 branch 进行 element-wise summation 融合。

Spatial Attention Module, 对输入特征进行 channel 间的 AVE 和 Max pooling,然后 concatenation(并联),再来个7*7大卷积,最后 Sigmoid

CBAM 特别轻量级,也方便在端部署,也可再cascade(串联)一下temporal attention,放进 video 任务里用~~

CDANet把Self-attention的思想用在图像分割,可通过long-range上下文关系更好地做到精准分割。

主要思想也是上述文章 CBAM 和 non-local 的融合变形:

把deep feature map进行spatial-wise self-attention,同时也进行channel-wise self-attetnion,最后将两个结果进行 element-wise sum 融合。

Dual Attention Network[6]

这样做的好处是:

在 CBAM 分别进行空间和通道 self-attention的思想上,直接使用了 non-local 的自相关矩阵 Matmul 的形式进行运算,避免了 CBAM 手工设计 pooling,多层感知器 等复杂操作。

[6]CDANet:Jun Fu et al., Dual Attention Network for Scene Segmentation, 2018

[5]Momenta, Squeeze-and-Excitation Networks,2017

CBAM(Convolutional Block Attention Module)使用指南的更多相关文章

  1. 【论文笔记】CBAM: Convolutional Block Attention Module

    CBAM: Convolutional Block Attention Module 2018-09-14 21:52:42 Paper:http://openaccess.thecvf.com/co ...

  2. [论文理解] CBAM: Convolutional Block Attention Module

    CBAM: Convolutional Block Attention Module 简介 本文利用attention机制,使得针对网络有了更好的特征表示,这种结构通过支路学习到通道间关系的权重和像素 ...

  3. CBAM: Convolutional Block Attention Module

    1. 摘要 作者提出了一个简单但有效的注意力模块 CBAM,给定一个中间特征图,我们沿着空间和通道两个维度依次推断出注意力权重,然后与原特征图相乘来对特征进行自适应调整. 由于 CBAM 是一个轻量级 ...

  4. RAM: Residual Attention Module for Single Image Super-Resolution

    1. 摘要 注意力机制是深度神经网络的一个设计趋势,其在各种计算机视觉任务中都表现突出.但是,应用到图像超分辨领域的注意力模型大都没有考虑超分辨和其它高层计算机视觉问题的天然不同. 作者提出了一个新的 ...

  5. 【注意力机制】Attention Augmented Convolutional Networks

    注意力机制之Attention Augmented Convolutional Networks 原始链接:https://www.yuque.com/lart/papers/aaconv 核心内容 ...

  6. CBAM: 卷积块注意模块

    CBAM: Convolutional Block Attention Module 论文地址:https://arxiv.org/abs/1807.06521   简介:我们提出了卷积块注意模块 ( ...

  7. Deep learning_CNN_Review:A Survey of the Recent Architectures of Deep Convolutional Neural Networks——2019

    CNN综述文章 的翻译 [2019 CVPR] A Survey of the Recent Architectures of Deep Convolutional Neural Networks 翻 ...

  8. SPP、ASPP、RFB、CBAM

    SPP:ASPP:将pooling 改为了 空洞卷积RFB:不同大小的卷积核和空洞卷积进行组合,认为大的卷积应该有更大的感受野. CBAM:空间和通道的注意力机制 SPP: Spatial Pyram ...

  9. 论文翻译:2022_Time-Frequency Attention for Monaural Speech Enhancement

    论文地址:单耳语音增强的时频注意 引用格式:Zhang Q, Song Q, Ni Z, et al. Time-Frequency Attention for Monaural Speech Enh ...

随机推荐

  1. JVM系列五(javac 编译器).

    一.概述 我们都知道 *.java 文件要首先被编译成 *.class 文件才能被 JVM 认识,这部分的工作主要由 Javac 来完成,类似于 Javac 这样的我们称之为前端编译器: 但是 *.c ...

  2. Linux下扫描服务器IP地址是否冲突(arp-scan)

    部署服务突然发现,连接的服务器断开了,因为服务器用户名密码是一样的,所以重新连接后,发现文件变了,跟之前不一样. 猜想是不是ip地址冲突了,两次连接的服务器不同. 网上查找资料说可以用工具扫描.工具: ...

  3. 【转】Java多线程面试问题集锦

    如果你即将去一家从事大型系统研发的公司进行Java面试,不可避免的会有多线程相关的问题.下面是一些针对初学者或者新手的问题,如果你已经具备良好的基础,那么你可以跳过本文,直接尝试针对进阶水平的Java ...

  4. Scanner使用方法

    import java.util.Scanner; //导入包 public void main (String args[]){ Scanner a=new Scanner(System.in); ...

  5. Java Linked集合的简单介绍和常用方法的使用

    LinkedList的简单介绍 java.util.LinkedList 集合数据存储的结构是链表结构.LinkedList是一个双向链表在实际开发中,对一个集合元素的添加和删除,经常涉及到首尾操作, ...

  6. map set vector用法小总结

    1.Map 定义 #include<map> map<string,bool> mp; 插入 mp[s]=; mp.insert(make_pair(s,)); 输出 cout ...

  7. React躬行记(16)——React源码分析

    React可大致分为三部分:Core.Reconciler和Renderer,在阅读源码之前,首先需要搭建测试环境,为了方便起见,本文直接采用了网友搭建好的环境,React版本是16.8.6,与最新版 ...

  8. Webpack实战(三):作为前端你不得不懂的Webpack资源入口和出口的配置

    关于Webpack前两篇跟大家分享的主要是Webpack的一些基本的配置,今天开始我们详细了解一下有关Webpack的各种配置,今天主要跟大家分享的是Webpack的资源入口和资源出口的配置. 如果想 ...

  9. Django SQLite3的使用

    https://blog.csdn.net/qq_34485436/article/details/72805908

  10. prometheus和zabbix的对比

    前言: 新公司要上监控,面试提到了Prometheus 是公司需要的监控解决方案,作为喜新厌旧的程序员,我当然是选择跟风了,之前主要做的是zabbix,既然公司需要prometheus,那没办法,只能 ...