【题解】NOIP2017逛公园(DP)
【题解】NOIP2017逛公园(DP)
第一次交挂了27分...我是不是必将惨败了...
考虑这样一种做法,设\(d_i\)表示从该节点到n节点的最短路径,\(dp(i,k)\)表示从\(i\)节点到\(n\)多走至多\(k\)距离的方案数。转移相当于枚举走哪条边,状态的变化是如果走这条边会比最短路多多少。
转移方程
\]
直接用dfs实现转移(记得判环)即可。
...
...
...
但是我们不能这么敷衍,转移顺序究竟是什么?
可以这样理解:反向跑最短路后,可以建成一个新图\(G'=(V,E)\)其中,\(E\)的原图边的子集,且对于边\((u,v)\)当且仅当\(d_u \ge d_v\)时存在(d是反向最短路数组)。这个新图若非DAG则无解/无限解。所以现在保证是个DAG了,所以拓扑排序之后可以转移了。(存在一个)拓扑排序就是DFS回溯顺序。
时间复杂度\(O(T(mk+nk+n\log m))\)。合法\(0\)边越多越能顶到这个复杂度。
//@winlere
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<vector>
using namespace std; typedef long long ll;
inline int qr(){
register int ret=0,f=0;
register char c=getchar();
while(c<48||c>57)f|=c==45,c=getchar();
while(c>=48&&c<=57) ret=ret*10+c-48,c=getchar();
return f?-ret:ret;
}
const int maxn=1e5+5;
template<class M>
struct HEAP{
M data[maxn*2];
int cnt;
inline void down(const int&pos){
for(int t=pos,k;(t<<1)<=cnt;t=k){
k=t<<1;
if(k<cnt&&data[k|1]<data[k]) k|=1;
if(data[t]>data[k]) swap(data[t],data[k]);
else return;
}
}
inline void up(const int&pos){
for(int t=pos;t>>1;t>>=1)
if(data[t]<data[t>>1]) swap(data[t],data[t>>1]);
else return;
}
inline void push(const M&x){data[++cnt]=x,up(cnt);}
inline void pop(){swap(data[1],data[cnt--]);down(1);}
inline M top(){return data[1];}
inline int size(){return cnt;}
};
HEAP< pair<int,int> > q;
struct E{
int to,nx,w;
E(){to=nx=w=0;}
E(const int&x,const int&y,const int&z){to=x; nx=y; w=z;}
}e[maxn<<2];
int head[maxn],cnt,head0[maxn];
inline void add(const int&fr,const int&to,const int&w,int*h=head){e[++cnt]=E(to,h[fr],w),h[fr]=cnt;}
int d[maxn],n,m,k,mod;
typedef pair<int,int> P;
const int inf=1e9;
inline void dij(){
for(int t=1;t<=n;++t) d[t]=inf;
q.push((P){d[n]=0,n});
while(q.size()){
P now=q.top(); q.pop();
if(now.first>d[now.second]) continue;
for(int t=head[now.second];t;t=e[t].nx)
if(d[e[t].to]>d[now.second]+e[t].w)
q.push((P){d[e[t].to]=d[now.second]+e[t].w,e[t].to});
}
}
int dp[55][maxn];
bool usd[55][maxn];
bool in[55][maxn];
int dfs(const int&now,const int&k){
if(in[k][now])return -1;
if(usd[k][now]) return dp[k][now];
dp[k][now]=now==n;
in[k][now]=usd[k][now]=1;
for(int t=head0[now];t;t=e[t].nx){
int g=e[t].w-(d[now]-d[e[t].to]),ret;
if(g>k)continue;
if(ret=dfs(e[t].to,k-g),-1==ret) return dp[k][now]=-1;
dp[k][now]=(dp[k][now]+ret)%mod;
}
in[k][now]=0;
return dp[k][now];
}
int main(){
int T=qr();
while(T--){
cnt=0;
n=qr(); m=qr(); k=qr(); mod=qr();
for(register int t=0;t<=n;++t) head[t]=head0[t]=0;
for(int i=0;i<=k;++i)
for(register int t=0;t<=n;++t)
dp[i][t]=usd[i][t]=in[i][t]=0;
for(int t=1,t1,t2,t3;t<=m;++t)
t1=qr(),t2=qr(),t3=qr(),add(t2,t1,t3),add(t1,t2,t3,head0);
dij();
//for(int t=1;t<=n;++t) printf("%d\n",d[t]);
printf("%d\n",dfs(1,k));
}
return 0;
}
【题解】NOIP2017逛公园(DP)的更多相关文章
- $[NOIp2017]$ 逛公园 $dp$/记搜
\(Des\) 给定一个有向图,起点为\(1\),终点为\(n\),求和最短路相差不超过\(k\)的路径数量.有\(0\)边.如果有无数条,则输出\(-1\). \(n\leq 10^5,k\leq ...
- [NOIP2017] 逛公园
[NOIP2017] 逛公园 题目大意: 给定一张图,询问长度 不超过1到n的最短路长度加k 的1到n的路径 有多少条. 数据范围: 点数\(n \le 10^5\) ,边数\(m \le 2*10^ ...
- 【比赛】NOIP2017 逛公园
考试的时候灵光一闪,瞬间推出DP方程,但是不知道怎么判-1,然后?然后就炸了. 后来发现,我只要把拓扑和DP分开,中间加一个判断,就AC了,可惜. 看这道题,我们首先来想有哪些情况是-1:只要有零环在 ...
- NOIP2017 逛公园 题解报告 【最短路 + 拓扑序 + dp】
题目描述 策策同学特别喜欢逛公园.公园可以看成一张NNN个点MMM条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,NNN号点是公园的出口,每条边有一个非负权值, 代表策策经过这条边所要花 ...
- NOIP2017逛公园(dp+最短路)
策策同学特别喜欢逛公园.公园可以看成一张N个点M条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,N号点是公园的出口,每条边有一个非负权值, 代表策策经过这条边所要花的时间. 策策每天都会 ...
- [NOIP2017]逛公园 题解
我连D1T3都不会我联赛完蛋了 题目描述 策策同学特别喜欢逛公园.公园可以看成一张 N 个点 M 条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口, N 号点是公园的出口,每条边有一个非负 ...
- P3953 逛公园(dp,最短路)
P3953 逛公园 题目描述 策策同学特别喜欢逛公园.公园可以看成一张NN个点MM条边构成的有向图,且没有 自环和重边.其中1号点是公园的入口,NN号点是公园的出口,每条边有一个非负权值, 代表策策经 ...
- [NOIP2017] 逛公园 解题报告(DP)
我很不想说 在我的AC代码上我打了表,但实在没有办法了.莫名的8,9个点RE.然而即便是打表...也花了我很久. 这大概是NOIP2017最难的题了,为了让不懂的人更容易理解,这篇题解会比较详细 我的 ...
- [NOIP2017]逛公园 最短路+拓扑排序+dp
题目描述 给出一张 $n$ 个点 $m$ 条边的有向图,边权为非负整数.求满足路径长度小于等于 $1$ 到 $n$ 最短路 $+k$ 的 $1$ 到 $n$ 的路径条数模 $p$ ,如果有无数条则输出 ...
随机推荐
- Flask学习之六 个人资料和头像
英文博客地址:http://blog.miguelgrinberg.com/post/the-flask-mega-tutorial-part-vi-profile-page-and-avatars ...
- js获取屏幕相关值
<html><script>function a(){document.write("屏幕分辨率为:"+screen.width+"*" ...
- Django ORM------Mysql
ORM操作 select * from tb where id > 1 #对应关系 models.tb.objects.filter(id__gt=1) models.tb.objects.fi ...
- @codeforces - 913F@ Strongly Connected Tournament
目录 @description@ @solution@ @accepted code@ @details@ @description@ n 个选手参加了一场竞赛,这场竞赛的规则如下: 1.一开始,所有 ...
- css 文字超出部分隐藏
未做隐藏处理 执行结果: 1.1行超出部分省略号 效果: 2.多行超出部分隐藏(目前只能在chrome浏览器中使用,其他浏览器不兼容) 效果: -webkit-line-clamp 属性定义显示行数可 ...
- canvas+js实现验证码功能
转载自:https://blog.csdn.net/qq_42463851/article/details/90755734<!DOCTYPE html> <html> < ...
- xml path 列转行实例
SQL Server2005提供了一个新查询语法——For XML PATH(''),这个语法有什么用呢?想象一下这样一个查询需求:有两个表,班级表A.学生表B,要查询一个班级里有哪些学生?针对这个需 ...
- ip地址库 与浏览器的关系
https://zhidao.baidu.com/question/325152705.html 只要手机连接数据上网就会产生ip,只要进入了淘宝,就能查出用户访问记录的. 手机是运营商动态分配的.它 ...
- CF1B.Spreadsheets(电子表格) 题解 模拟
作者:zifeiy 标签:模拟 题目出处:Spreadsheets 题目描述 在流行的电子表格系统中(例如,在Excel中),使用如下计算方式来对列号进行计算. 第1列对应A,第2列对应B,--,第2 ...
- java 多线程安全问题的解决方法
三种方法: 同步代码块: synchronized(obj) { //obj表示同步监视器,是同一个同步对象 /**..... TODO SOMETHING */ } 同步方法 格式: 在方法上加 ...