Poj   AcWing

Description

给定一个长度为N的序列 A,要求把该序列分成若干段,在满足“每段中所有数的和”不超过M的前提下,让“每段中所有数的最大值”之和最小.

N<=105,M<=1011,0<Ai<=106

Sol

一篇比较清楚的题解 $OvO$

$F[i]$表示把前$i$个数分成若干段,满足每段中所有数之和不超过$M$的前提下,各段的最大值之和的最小值

不难推出转移方程:

但是直接枚举$j$的做法是$O(N^{2})$的,显然过不去,还要优化.

DP转移优化的指导思想是及时排除不可能的决策,保持候选集合的高度有效性和秩序性.

本着这个思想我们来思考怎样的j可能成为最优解.

$j$要满足一下两个条件之一才有可能成为最优解:

1.$A[j+1]=max\ Ak$

2.$\sum_{k=j}^{i}Ak>M$ 即: j是满足区间和小于等于$M$的最小下标

证明,反证法:

假设以上条件都不成立

由以上条件可知$[j,i]$和$[j-1,i]$的区间都是满足题意(区间和$<=M$)且区间最大值相等

又因为显然有$F[j-1]$≤$F[j]$

所以$F[j-1]+max{Ak}<F[j]+max{Ak}$

$j-1$比$j$更优,$j$不可能是最优的

第$1$个条件显然可以维护一个$j$递增,$Aj$递减的单调队列

第$2$个条件的$j$也显然是递增的,所以就维护一个$nw$表示对于当前i满足该条件的$j$,$i+1$时,检查$nw$是否还满足区间和$>M$,满足就$nw++$.至于$max\ Ak$,当然可以用$ST$表预处理出来,但是其实不用辣么麻烦,因为对于每一个$i$,我们都会算出满足条件$1$ 的 $j$,然后它就是最大值丫,就可以直接更新答案了.

Code

#include<iostream>
#include<cstdio>
#define il inline
#define Rg register
#define go(i,a,b) for(Rg int i=a;i<=b;i++)
#define yes(i,a,b) for(Rg int i=a;i>=b;i++)
#define ll long long
using namespace std;
il int read()
{
int x=,y=;char c=getchar();
while(c<''||c>''){if(c=='-')y=-;c=getchar();}
while(c>=''&&c<=''){x=(x<<)+(x<<)+c-'';c=getchar();}
return x*y;
}
int n,a[],q[],f[];
ll m,s[];
int main()
{
n=read(),scanf("%lld",&m);
go(i,,n){a[i]=read();s[i]=s[i-]+a[i];if(a[i]>m){printf("-1");return ;}}
int nw=,h=,t=;
go(i,,n)
{
while(s[i]-s[nw-]>m)nw++;
while(h<=t && q[h]<nw)h++;
while(h<=t && a[q[t]]<=a[i])t--;
q[++t]=i;
f[i]=f[nw-]+a[q[h]];
go(j,h,t-)f[i]=min(f[i],f[q[j]]+a[q[j+]]);
}
printf("%d\n",f[n]);
return ;
}

随机推荐

  1. Android GDI 图形渲染

      发布于2011-07-26   导读:对于Android开发者来说,成系列的技术文章对他们的技术成长帮助最大.如下是我们向您强烈推荐的主题为Android开发的第一个系列文章. <Andro ...

  2. 【iOS知识学习】_int、NSInteger、NSUInteger、NSNumber的差别和联系

    版权声明:本文为博主原创文章.未经博主同意不得转载. https://blog.csdn.net/weasleyqi/article/details/33396809 1.首先先了解下NSNumber ...

  3. 如何减少idea的内存消耗

    如何减少idea的内存消耗 标签: idea 内存 内存泄露 异常 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014028392/articl ...

  4. vue简单总结

    首先  介绍几个常见指令 指令:以属性的形式出现在标签上 v-xxx 1.内置指令 数据绑定指令  v-html v-text    举例 <span v-html="msg" ...

  5. saltStack_安装和使用

    服务端: yum install -y salt-master 客服端: yum install -y salt-minion 服务端启动: systemctl restartsalt-master ...

  6. day5_python之subprocess模块

    subprocess作用:用来执行系统命令它会开启一个子进程,通过子进程去执行一些命令 读取正确的命令执行结果,如果没有指定把结果输出到哪里,默认打印到屏幕上 #subprocess.Popen(r' ...

  7. 如何使用jmeter调用soap协议

  8. javascript 元素的大小

    1.偏移量 元素的可见大小由其高度.宽度决定,包括所有内边距.滚动条和边框大小(不包含外边距).通过下列4个属性可以获取元素的偏移量: offsetHeight: offsetWidth: offse ...

  9. Example-09-01

    #define _CRT_SECURE_NO_WARNINGS #include <cstdio> #include <cstring> int min(int a, int ...

  10. 洛谷P3377 【模板】左偏树(可并堆) 题解

    作者:zifeiy 标签:左偏树 这篇随笔需要你在之前掌握 堆 和 二叉树 的相关知识点. 堆支持在 \(O(\log n)\) 的时间内进行插入元素.查询最值和删除最值的操作.在这里,如果最值是最小 ...