Euler Sums系列(三)
\[\Large\sum_{n=1}^{\infty}\frac{\left(H_{n}^{(2)}\right)^{2}}{n^{2}}=\frac{19}{24}\zeta(6)+\zeta^{2}(3)\]
\(\Large\mathbf{Proof:}\)
We use the Abel's rearrangement over the \(N\)-th partial sum of the series,
\[\begin{align*}\sum\limits_{n=1}^{N}\frac{\left(H_n^{(2)}\right)^2}{n^2} &= \sum\limits_{n=1}^{N-1} \left[\left(H_n^{(2)}\right)^2-\left(H_{n+1}^{(2)}\right)^2\right]\sum\limits_{k=1}^{n}\frac{1}{k^2}+\left(H_N^{(2)}\right)^2\sum\limits_{k=1}^{N} \frac{1}{k^2}\\&= \left(H_N^{(2)}\right)^3 - \sum\limits_{n=0}^{N-1} \frac{\left(H_n^{(2)}+H_{n+1}^{(2)}\right)H_n^{(2)}}{(n+1)^2}\\
&= \left(H_N^{(2)}\right)^3 - \sum\limits_{n=1}^{N} \frac{\left(2H_n^{(2)}-\dfrac{1}{n^2}\right)\left(H_n^{(2)}-\dfrac{1}{n^2}\right)}{n^2}\\&= \left(H_N^{(2)}\right)^3 - \sum\limits_{n=1}^{N} \frac{1}{n^2}\left(2\left(H_n^{(2)}\right)^2-3\frac{H_n^{(2)}}{n^2}+\frac{1}{n^4}\right)\\
&= \frac{1}{3}\left(H_N^{(2)}\right)^3+\sum\limits_{n=1}^{N}\frac{H_n^{(2)}}{n^4}-\frac{1}{3}\sum\limits_{n=1}^{N}\frac{1}{n^6}\end{align*}\]
I.e.,\(\displaystyle \sum\limits_{n=1}^{\infty}\frac{\left(H_n^{(2)}\right)^2}{n^2} = \frac{1}{3}\zeta(2)^3+\sum\limits_{n=1}^{\infty} \frac{H_n^{(2)}}{n^4}-\frac{1}{3}\zeta(6)\)
M.N.S.E showed in this answer one way of dealing with \(\displaystyle \sum\limits_{n=1}^{\infty} \frac{H_n^{(2)}}{n^4} = \zeta(3)^2 - \frac{1}{3}\zeta(6)\). Combining the results lead to,
\[\Large\boxed{\displaystyle \sum\limits_{n=1}^{\infty} \frac{\left(H_n^{(2)}\right)^2}{n^2} = \color{blue}{\zeta(3)^2 + \frac{19}{24}\zeta(6)}}\]
Euler Sums系列(三)的更多相关文章
- Euler Sums系列(六)
\[\Large\displaystyle \sum_{n=1}^{\infty}\frac{H_{2n}}{n(6n+1)}\] \(\Large\mathbf{Solution:}\) Let \ ...
- Euler Sums系列(五)
\[\Large\displaystyle \sum_{n=1}^{\infty} \frac{\widetilde{H_n}}{n^{3}}\] where \(\widetilde{H_n}\) ...
- Euler Sums系列(一)
\[\Large\sum_{n=1}^{\infty} \frac{H_{n}}{2^nn^4}\] \(\Large\mathbf{Solution:}\) Let \[\mathcal{S}=\s ...
- Euler Sums系列(四)
\[\Large\displaystyle \sum_{n=1}^\infty (-1)^n \frac{H_n}{2n+1}=\mathbf{G}-\frac{\pi}{2}\ln(2)\] \(\ ...
- Euler Sums系列(二)
\[\Large\sum_{n=0}^\infty \frac{H_{2n+1}}{(2n+1)^2}=\frac{21}{16}\zeta(3)\] \(\Large\mathbf{Proof:}\ ...
- 前端构建大法 Gulp 系列 (三):gulp的4个API 让你成为gulp专家
系列目录 前端构建大法 Gulp 系列 (一):为什么需要前端构建 前端构建大法 Gulp 系列 (二):为什么选择gulp 前端构建大法 Gulp 系列 (三):gulp的4个API 让你成为gul ...
- Web 开发人员和设计师必读文章推荐【系列三十】
<Web 前端开发精华文章推荐>2014年第9期(总第30期)和大家见面了.梦想天空博客关注 前端开发 技术,分享各类能够提升网站用户体验的优秀 jQuery 插件,展示前沿的 HTML5 ...
- MyBatis学习系列三——结合Spring
目录 MyBatis学习系列一之环境搭建 MyBatis学习系列二——增删改查 MyBatis学习系列三——结合Spring MyBatis在项目中应用一般都要结合Spring,这一章主要把MyBat ...
- MySQL并发复制系列三:MySQL和MariaDB实现对比
http://blog.itpub.net/28218939/viewspace-1975856/ 并发复制(Parallel Replication) 系列三:MySQL 5.7 和MariaDB ...
随机推荐
- 16 符号 xargs
03. 系统特殊符号: 1) 基础符号系列 美元符号:$ 叹号符号: ! 取反 竖线符号: | 管道符号 前一个命令执行结果交给后面命令处理 xargs 命令|xargs 命令 xargs: 将信息进 ...
- 整合SSM2
SSM框架的搭建 注意: 1.SpringMVC和Spring 不需要什么特殊的配置就可以结合 2.MyBatis和Spring 1)需要引入额外的jar包:m ...
- bzoj3626: [LNOI2014]LCA (树链剖分)
很神奇的方法 感觉是有生之年都想不到正解的这种 考虑对i 到根的节点权值 + 1,则从根到z的路径和就是lca(i,z)的深度 所以依次把0 ~ n - 1的点权值 + 1 对于询问[l, r] 这个 ...
- 使用ResponseBodyAdvice统一包装响应返回String的时候出现java.lang.ClassCastException: com.xxx.dto.common.ResponseResult cannot be cast to java.lang.String
代码如下: @Override public ResponseResult<Object> beforeBodyWrite(Object returnValue, MethodParame ...
- pudn免费下载账号 codeforge积分账号 pudn共享账号 codeforge下载账号
www.pudn.com和www.codeforge.cn网站下载代码很好,没有积分怎么办?那么多好的matlab代码,matlab程序,C,JAVA等等,都要充值啊!!! 下面的账号积分都用完了,大 ...
- auto_ptr的VC版本源码剖析
auto_ptr是当前C++标准库(STL)中提供的一种智能指针,包含于头文件 #include<memory> .auto_ptr 能够方便的管理单个堆内存对象,在你不用的时候自动帮你释 ...
- Redis读写分离的简单配置
Master进行写操作,可能只需要一台Master.进行写操作,关闭数据持久化. Slave进行读操作,可能需要多台Slave.进行读操作,打开数据持久化. 假设初始配置有Master服务器为A,sl ...
- FreeRTOS学习笔记3:内核控制及开启调度器
内核控制函数API 应用层中不会用到taskYIELD() //任务切换.会自动切换当前就绪表里优先级最高的任务 临界区 //不能被打断的代码段任务中进入临界区任务中退出临界区中断服务进入临界区中断服 ...
- 随机获取list或set或map中的一个元素
转自:https://m.2cto.com/kf/201507/412937.html import java.util.HashSet;import java.util.List;import ja ...
- Codeforces Round #621 (Div. 1 + Div. 2) D
题意: 给n,m,k,有n个点,m条线,距离都是一: 有k个特殊点,选择其中两个,进行相连,距离变为1,使得原本的最短路,经过相连改变小或者不变,最终结果是所有结果里面的最大距离. 思路: 选择i,j ...