%% Machine Learning Online Class - Exercise 4 Neural Network Learning

% Instructions
% ------------
%
% This file contains code that helps you get started on the
% linear exercise. You will need to complete the following functions
% in this exericse:
%
% sigmoidGradient.m
% randInitializeWeights.m
% nnCostFunction.m
%
% For this exercise, you will not need to change any code in this file,
% or any other files other than those mentioned above.
% %% Initialization
clear ; close all; clc
%% Setup the parameters you will use for this exercise
input_layer_size = 400; % 20x20 Input Images of Digits
hidden_layer_size = 25; % 25 hidden units
num_labels = 10; % 10 labels, from 1 to 10
% (note that we have mapped "0" to label 10) %% =========== Part 1: Loading and Visualizing Data =============
% We start the exercise by first loading and visualizing the dataset.
% You will be working with a dataset that contains handwritten digits.
% % Load Training Data
fprintf('Loading and Visualizing Data ...\n') load('ex4data1.mat');
m = size(X, 1); % Randomly select 100 data points to display
sel = randperm(size(X, 1));
sel = sel(1:100);
sel(:);      ...

解释

a = X(sel, :);
X(sel, :);
.......
.......
.......
.......
.......
.
.
.
......

解释

displayData(X(sel, :));

fprintf('Program paused. Press enter to continue.\n');
pause; %% ================ Part 2: Loading Parameters ================
% In this part of the exercise, we load some pre-initialized
% neural network parameters. fprintf('\nLoading Saved Neural Network Parameters ...\n') % Load the weights into variables Theta1 and Theta2
load('ex4weights.mat'); % Unroll parameters
nn_params = [Theta1(:) ; Theta2(:)];
https://www.cnblogs.com/liu-wang/p/9466123.html

解释

%% ================ Part 3: Compute Cost (Feedforward) ================
% To the neural network, you should first start by implementing the
% feedforward part of the neural network that returns the cost only. You
% should complete the code in nnCostFunction.m to return cost. After
% implementing the feedforward to compute the cost, you can verify that
% your implementation is correct by verifying that you get the same cost
% as us for the fixed debugging parameters.
%
% We suggest implementing the feedforward cost *without* regularization
% first so that it will be easier for you to debug. Later, in part 4, you
% will get to implement the regularized cost.
%
fprintf('\nFeedforward Using Neural Network ...\n') % Weight regularization parameter (we set this to 0 here).
lambda = 0; J = nnCostFunction(nn_params, input_layer_size, hidden_layer_size, ...
num_labels, X, y, lambda); fprintf(['Cost at parameters (loaded from ex4weights): %f '...
'\n(this value should be about 0.287629)\n'], J); fprintf('\nProgram paused. Press enter to continue.\n');
pause; %% =============== Part 4: Implement Regularization ===============
% Once your cost function implementation is correct, you should now
% continue to implement the regularization with the cost.
% fprintf('\nChecking Cost Function (w/ Regularization) ... \n') % Weight regularization parameter (we set this to 1 here).
lambda = 1; J = nnCostFunction(nn_params, input_layer_size, hidden_layer_size, ...
num_labels, X, y, lambda); fprintf(['Cost at parameters (loaded from ex4weights): %f '...
'\n(this value should be about 0.383770)\n'], J); fprintf('Program paused. Press enter to continue.\n');
pause; %% ================ Part 5: Sigmoid Gradient ================
% Before you start implementing the neural network, you will first
% implement the gradient for the sigmoid function. You should complete the
% code in the sigmoidGradient.m file.
% fprintf('\nEvaluating sigmoid gradient...\n') g = sigmoidGradient([1 -0.5 0 0.5 1]);
fprintf('Sigmoid gradient evaluated at [1 -0.5 0 0.5 1]:\n ');
fprintf('%f ', g);
fprintf('\n\n'); fprintf('Program paused. Press enter to continue.\n');
pause; %% ================ Part 6: Initializing Pameters ================
% In this part of the exercise, you will be starting to implment a two
% layer neural network that classifies digits. You will start by
% implementing a function to initialize the weights of the neural network
% (randInitializeWeights.m) fprintf('\nInitializing Neural Network Parameters ...\n') initial_Theta1 = randInitializeWeights(input_layer_size, hidden_layer_size);
initial_Theta2 = randInitializeWeights(hidden_layer_size, num_labels); % Unroll parameters
initial_nn_params = [initial_Theta1(:) ; initial_Theta2(:)]; %% =============== Part 7: Implement Backpropagation ===============
% Once your cost matches up with ours, you should proceed to implement the
% backpropagation algorithm for the neural network. You should add to the
% code you've written in nnCostFunction.m to return the partial
% derivatives of the parameters.
%
fprintf('\nChecking Backpropagation... \n'); % Check gradients by running checkNNGradients
checkNNGradients; fprintf('\nProgram paused. Press enter to continue.\n');
pause; %% =============== Part 8: Implement Regularization ===============
% Once your backpropagation implementation is correct, you should now
% continue to implement the regularization with the cost and gradient.
% fprintf('\nChecking Backpropagation (w/ Regularization) ... \n') % Check gradients by running checkNNGradients
lambda = 3;
checkNNGradients(lambda); % Also output the costFunction debugging values
debug_J = nnCostFunction(nn_params, input_layer_size, ...
hidden_layer_size, num_labels, X, y, lambda); fprintf(['\n\nCost at (fixed) debugging parameters (w/ lambda = 10): %f ' ...
'\n(this value should be about 0.576051)\n\n'], debug_J); fprintf('Program paused. Press enter to continue.\n');
pause; %% =================== Part 8: Training NN ===================
% You have now implemented all the code necessary to train a neural
% network. To train your neural network, we will now use "fmincg", which
% is a function which works similarly to "fminunc". Recall that these
% advanced optimizers are able to train our cost functions efficiently as
% long as we provide them with the gradient computations.
%
fprintf('\nTraining Neural Network... \n') % After you have completed the assignment, change the MaxIter to a larger
% value to see how more training helps.
options = optimset('MaxIter', 50); % You should also try different values of lambda
lambda = 1; % Create "short hand" for the cost function to be minimized
costFunction = @(p) nnCostFunction(p, ...
input_layer_size, ...
hidden_layer_size, ...
num_labels, X, y, lambda); % Now, costFunction is a function that takes in only one argument (the
% neural network parameters)
[nn_params, cost] = fmincg(costFunction, initial_nn_params, options); % Obtain Theta1 and Theta2 back from nn_params
Theta1 = reshape(nn_params(1:hidden_layer_size * (input_layer_size + 1)), ...
hidden_layer_size, (input_layer_size + 1)); Theta2 = reshape(nn_params((1 + (hidden_layer_size * (input_layer_size + 1))):end), ...
num_labels, (hidden_layer_size + 1)); fprintf('Program paused. Press enter to continue.\n');
pause; %% ================= Part 9: Visualize Weights =================
% You can now "visualize" what the neural network is learning by
% displaying the hidden units to see what features they are capturing in
% the data. fprintf('\nVisualizing Neural Network... \n') displayData(Theta1(:, 2:end)); fprintf('\nProgram paused. Press enter to continue.\n');
pause; %% ================= Part 10: Implement Predict =================
% After training the neural network, we would like to use it to predict
% the labels. You will now implement the "predict" function to use the
% neural network to predict the labels of the training set. This lets
% you compute the training set accuracy. pred = predict(Theta1, Theta2, X); fprintf('\nTraining Set Accuracy: %f\n', mean(double(pred == y)) * 100);

  

机器学习-反向传播算法(BP)代码实现(matlab)的更多相关文章

  1. 【机器学习】反向传播算法 BP

    知识回顾 1:首先引入一些便于稍后讨论的新标记方法: 假设神经网络的训练样本有m个,每个包含一组输入x和一组输出信号y,L表示神经网络的层数,S表示每层输入的神经元的个数,SL代表最后一层中处理的单元 ...

  2. 神经网络与机器学习 笔记—反向传播算法(BP)

    先看下面信号流图,L=2和M0=M1=M2=M3=3的情况,上面是前向通过,下面部分是反向通过. 1.初始化.假设没有先验知识可用,可以以一个一致分布来随机的挑选突触权值和阈值,这个分布选择为均值等于 ...

  3. 深度神经网络(DNN)反向传播算法(BP)

    在深度神经网络(DNN)模型与前向传播算法中,我们对DNN的模型和前向传播算法做了总结,这里我们更进一步,对DNN的反向传播算法(Back Propagation,BP)做一个总结. 1. DNN反向 ...

  4. 卷积神经网络(CNN)反向传播算法

    在卷积神经网络(CNN)前向传播算法中,我们对CNN的前向传播算法做了总结,基于CNN前向传播算法的基础,我们下面就对CNN的反向传播算法做一个总结.在阅读本文前,建议先研究DNN的反向传播算法:深度 ...

  5. 机器学习 —— 基础整理(七)前馈神经网络的BP反向传播算法步骤整理

    这里把按 [1] 推导的BP算法(Backpropagation)步骤整理一下.突然想整理这个的原因是知乎上看到了一个帅呆了的求矩阵微分的方法(也就是 [2]),不得不感叹作者的功力.[1] 中直接使 ...

  6. 深度学习之反向传播算法(BP)代码实现

    反向传播算法实战 本文仅仅是反向传播算法的实现,不涉及公式推导,如果对反向传播算法公式推导不熟悉,强烈建议查看另一篇文章神经网络之反向传播算法(BP)公式推导(超详细) 我们将实现一个 4 层的全连接 ...

  7. 反向传播(BP)算法理解以及Python实现

    全文参考<机器学习>-周志华中的5.3节-误差逆传播算法:整体思路一致,叙述方式有所不同: 使用如上图所示的三层网络来讲述反向传播算法: 首先需要明确一些概念, 假设数据集\(X=\{x^ ...

  8. 神经网络训练中的Tricks之高效BP(反向传播算法)

    神经网络训练中的Tricks之高效BP(反向传播算法) 神经网络训练中的Tricks之高效BP(反向传播算法) zouxy09@qq.com http://blog.csdn.net/zouxy09 ...

  9. 稀疏自动编码之反向传播算法(BP)

    假设给定m个训练样本的训练集,用梯度下降法训练一个神经网络,对于单个训练样本(x,y),定义该样本的损失函数: 那么整个训练集的损失函数定义如下: 第一项是所有样本的方差的均值.第二项是一个归一化项( ...

随机推荐

  1. 2018阿里云云数据库RDS核心能力演进

    摘要: 2018年云数据库RDS发展上,不但针对MySQL.SQL Server.PostgreSQL提供了适合个人入门用户的基础版产品,以实惠的价格普惠广大中小用户.更加入最新的MariaDB TX ...

  2. 听说“辣鸡小隔膜”出V1.3了?

    点击下载zip就送屠龙宝刀升级脚本(Version 1.2) 点击下载zip就送倚天宝剑种子测试器(Version 1.2) 顺便膜一波orz::Kevin

  3. spark出现BINLOG_FORMAT = STATEMENT

    错误解决: Caused by: java.sql.SQLException: Cannot execute statement: impossible to write to binary log ...

  4. [Android开发常见问题-4] RunTime.exec()如何以root权限执行多条指令?

    转:http://blog.csdn.net/alexander_xfl/article/details/9150971 RunTime.exec()这个接口可以说是给我们开发者提供了一个很好的直观操 ...

  5. 谈谈E语言

    基于中国文化底蕴的编程语言,  绝对不是E语言那个样子. 基于中文的编程,必将是计算机届的一次原子爆炸!

  6. tarjan模板 强联通分量+割点+割边

    // https://www.cnblogs.com/stxy-ferryman/p/7779347.html ; struct EDGE { int to, nt; }e[N*N]; int hea ...

  7. 解决通过vmware克隆虚拟机后,无法上网的问题

    注意:如果源主机是CentOS 6.8,复制出来的机器会出现无法上网. 如果源主机是CentOS 7,复制出来的机器可以正常上网.复制后,只要改下IP地址即可上网. 出现该问题的原因是,我们克隆后,将 ...

  8. Nginx常用功能配置二

    Nginx常用功能配置二 Nginx location匹配设置 location作用:可以根据用户请求的URI来执行不同的应用,根据用户请求的网站的地址URL匹配. location语法: locat ...

  9. Springboot整合dubbo搭建基本的消费、提供和负载均衡

    文章目录 1.确定接口 2.创建提供者 2.1 pom配置 2.2dubbo配置文件 2.3 application.properties 2.4 mybatis相关 2.4.1 配置UserMapp ...

  10. c_数据结构_二叉树的遍历实现

    #include<stdio.h> #include<stdlib.h> #define OK 1 #define ERROR 0 #define OVERFLOW -2 #d ...