POJ 2031 Building a Space Station (prim裸题)
Description
You are a member of the space station engineering team, and are assigned a task in the construction process of the station. You are expected to write a computer program to complete the task.The space station is made up with a number of units, called cells. All cells are sphere-shaped, but their sizes are not necessarily uniform. Each cell is fixed at its predetermined position shortly after the station is successfully put into its orbit. It is quite strange that two cells may be touching each other, or even may be overlapping. In an extreme case, a cell may be totally enclosing another one. I do not know how such arrangements are possible.
All the cells must be connected, since crew members should be able to walk from any cell to any other cell. They can walk from a cell A to another cell B, if, (1) A and B are touching each other or overlapping, (2) A and B are connected by a `corridor', or (3) there is a cell C such that walking from A to C, and also from B to C are both possible. Note that the condition (3) should be interpreted transitively.
You are expected to design a configuration, namely, which pairs of cells are to be connected with corridors. There is some freedom in the corridor configuration. For example, if there are three cells A, B and C, not touching nor overlapping each other, at least three plans are possible in order to connect all three cells. The first is to build corridors A-B and A-C, the second B-C and B-A, the third C-A and C-B. The cost of building a corridor is proportional to its length. Therefore, you should choose a plan with the shortest total length of the corridors.
You can ignore the width of a corridor. A corridor is built between points on two cells' surfaces. It can be made arbitrarily long, but of course the shortest one is chosen. Even if two corridors A-B and C-D intersect in space, they are not considered to form a connection path between (for example) A and C. In other words, you may consider that two corridors never intersect.
Input
The input consists of multiple data sets. Each data set is given in the following format.
n
x1 y1 z1 r1
x2 y2 z2 r2
...
xn yn zn rn
The first line of a data set contains an integer n, which is the number of cells. n is positive, and does not exceed 100.The following n lines are descriptions of cells. Four values in a line are x-, y- and z-coordinates of the center, and radius (called r in the rest of the problem) of the sphere, in this order. Each value is given by a decimal fraction, with 3 digits after the decimal point. Values are separated by a space character.Each of x, y, z and r is positive and is less than 100.0.The end of the input is indicated by a line containing a zero.
Output
For each data set, the shortest total length of the corridors should be printed, each in a separate line. The printed values should have 3 digits after the decimal point. They may not have an error greater than 0.001.Note that if no corridors are necessary, that is, if all the cells are connected without corridors, the shortest total length of the corridors is 0.000.
Sample Input
10.000 10.000 50.000 10.000
40.000 10.000 50.000 10.000
40.000 40.000 50.000 10.000 30.000 30.000 30.000 20.000
40.000 40.000 40.000 20.000 5.729 15.143 3.996 25.837
6.013 14.372 4.818 10.671
80.115 63.292 84.477 15.120
64.095 80.924 70.029 14.881
39.472 85.116 71.369 5.553
Sample Output
20.000
0.000
73.834
裸prim,要求修一条连通各个空间站的轨道,空间站为球形,若两个空间站半径之和大于其球心距离(两球相交),两个空间站距离为0,若半径之和大于其球心距离,则要修的轨道距离为球心距离减去半径之和。如此构造完连通图后直接prim即可
ac代码
#include <iostream>
#include <cstdio>
#include <string.h>
#include <algorithm>
#include <math.h>
#include <iomanip>
#define MIN(x,y) ((x)>(y))?(y):(x)
#define MAX(x,y) ((x)>(y))?(x):(y) using namespace std; const int inf = 0x3f3f3f3f;
const double dinf = 0xffffffff;
const int vspot = ;
const int espot = ;
int N;
double ans;
double graph[vspot][vspot];
double dist[vspot];
double x[vspot], y[vspot], z[vspot], r[vspot];
bool vis[vspot]; void prim()
{
int k;
double sum = ;
memset( vis, false, sizeof(vis) );
vis[] = true;
for( int i = ; i <= N; i++ )
dist[i] = graph[][i]; for( int i = ; i <= N; i++ )
{
double mincost = dinf;
for ( int j = ; j <= N; j++ )
if ( !vis[j] && dist[j] < mincost )
{
mincost = dist[j];
k = j;
} vis[k] = true;
sum += mincost; for ( int j = ; j <= N; j++ )
if ( !vis[j] && dist[j] > graph[k][j] )
dist[j] = graph[k][j];
}
ans = sum;
} double getDist( int i, int j )
{
if( i == j )
return (double)0.0;
double a1 = (x[i]-x[j])*(x[i]-x[j]);
double a2 = (y[i]-y[j])*(y[i]-y[j]);
double a3 = (z[i]-z[j])*(z[i]-z[j]);
return sqrt(a1+a2+a3);
} int main()
{
while( ~scanf( "%d", &N ) )
{
memset( graph, , sizeof(graph) );
if(N==)
break;
for( int i = ; i <= N; i++ )
scanf( "%lf %lf %lf %lf", &x[i], &y[i], &z[i], &r[i] ); for( int i = ; i <= N; i++ )
for( int j = i; j <= N; j++ )
{
double temp = getDist( i, j );
if( r[i]+r[j] < temp )
graph[i][j] = graph[j][i] = temp - r[i] - r[j];
else
graph[i][j] = graph[j][i] = (double)0.0;
} prim();
cout.setf(ios::fixed);
cout << setprecision() << ans << endl;
}
return ;
}
POJ 2031 Building a Space Station (prim裸题)的更多相关文章
- POJ 2031 Building a Space Station【经典最小生成树】
链接: http://poj.org/problem?id=2031 http://acm.hust.edu.cn/vjudge/contest/view.action?cid=22013#probl ...
- POJ 2031 Building a Space Station
3维空间中的最小生成树....好久没碰关于图的东西了..... Building a Space Station Time Limit: 1000MS Memory Li ...
- POJ 2031 Building a Space Station (最小生成树)
Building a Space Station 题目链接: http://acm.hust.edu.cn/vjudge/contest/124434#problem/C Description Yo ...
- poj 2031 Building a Space Station【最小生成树prime】【模板题】
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5699 Accepte ...
- POJ 2031 Building a Space Station (最小生成树)
Building a Space Station Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 5173 Accepte ...
- POJ - 2031 Building a Space Station 三维球点生成树Kruskal
Building a Space Station You are a member of the space station engineering team, and are assigned a ...
- POJ 2031 Building a Space Station (计算几何+最小生成树)
题目: Description You are a member of the space station engineering team, and are assigned a task in t ...
- POJ 2031 Building a Space Station【最小生成树+简单计算几何】
You are a member of the space station engineering team, and are assigned a task in the construction ...
- Prim POJ 2031 Building a Space Station
题目传送门 题意:给出n个三维空间的球体,球体是以圆心坐标+半径来表示的,要求在球面上建桥使所有的球联通,求联通所建桥的最小长度. 分析:若两点距离大于两半径和的长度,那么距离就是两点距离 - 半径和 ...
随机推荐
- 对比两个String无规律包含连续4个相同字符返回true的方法
package com.qif.dsa.util; import java.util.ArrayList; import java.util.List; /** * @author * @Title: ...
- localStorage,sessionStorage,cookie区别
localStorage:HTML5新增的在浏览器端存储数据的方法.设置和获取localStorage的方法: 设置: localStorage.name = 'zjj'; 获取: localStor ...
- SpringCloud学习笔记(五):Ribbon负载均衡
简介 Spring Cloud Ribbon是基于Netflix Ribbon实现的一套 客户端 负载均衡的工具 .(重点:客户端) 简单的说,Ribbon是Netflix发布的开源项目,主要功能是提 ...
- 07_Spring事务处理
一.事务概述 数据库的事务: 事务是一组操作的执行单元,相对于数据库操作来讲,事务管理的是一组SQL指令,比如增加,修改,删除等.事务的一致性,要求,这个事务内的操作必须全部执行成功,如果在此过程种出 ...
- 05_jQuery对象初识(三)登录案例
1.案例需求:点击登录按钮验证用户名和密码都不为空,为空就在对应的input标签下面显示一个错误的提示信息. 1.给登录的按钮绑定点击事件 2.点击事件要做的事情 1.找到input标签.取值.判断是 ...
- Chapter 4 图
Chapter 4 图 . 1- 图的存储结构 无向图:对称 有向图:…… 2- 图的遍历 1 深度优先搜索(DFS) 类似于二叉树的先序遍历 2 广度优先搜索(BFS) 类似于二叉树 ...
- vue 引入css及注意事项
组件中: <style scoped> @import '../../static/css/xx.css'; // “ :”必须有 </style> 注:若用以下方法,全部组件 ...
- Markdown的入门教程,非常的使用
原文链接: https://www.jianshu.com/p/20e82ddb37cb 链接地址 点我 粘贴进来的内容竟然没有图片,好气呦 目录 概述 简介 官方文档 Markdown编 ...
- CF629E Famil Door and Roads【树上计数+分类讨论】
Online Judge:Codeforces629E,Luogu-CF629E Label:树上计数,分类讨论,换根 题目描述 给出一棵n个节点的树.有m个询问,每一个询问包含两个数a.b,我们可以 ...
- Ubuntu 14.04 Ruby 2.3.3 安装
在Ubuntu 14.04通过下载Ruby源码包进行安装. 第一步,更新apt-get sudo apt-get update 通过apt-get安装ruby依赖 sudo apt-get insta ...