题目描述

农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形的土地。John打算在牧场上的某几格里种上美味的草,供他的奶牛们享用。

遗憾的是,有些土地相当贫瘠,不能用来种草。并且,奶牛们喜欢独占一块草地的感觉,于是John不会选择两块相邻的土地,也就是说,没有哪两块草地有公共边。

John想知道,如果不考虑草地的总块数,那么,一共有多少种种植方案可供他选择?(当然,把新牧场完全荒废也是一种方案)

输入输出格式

输入格式:

第一行:两个整数M和N,用空格隔开。

第2到第M+1行:每行包含N个用空格隔开的整数,描述了每块土地的状态。第i+1行描述了第i行的土地,所有整数均为0或1,是1的话,表示这块土地足够肥沃,0则表示这块土地不适合种草。

输出格式:

一个整数,即牧场分配总方案数除以100,000,000的余数。

输入输出样例

输入样例#1:

2 3
1 1 1
0 1 0
输出样例#1:

9

状压dp。
用f[k]表示此行状态,g[j]表示上一行状态,然后用g[j]来更新f[k],数据很弱,直接水过。
//Serene
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
using namespace std;
const int maxn=14,maxs=(1<<12),mod=1e9;
int n,m,f[maxs],g[maxs],ans,tu[maxn];
bool avl[maxs]; int aa;char cc;
int read() {
aa=0;cc=getchar();
while(cc<'0'||cc>'9') cc=getchar();
while(cc>='0'&&cc<='9') aa=aa*10+cc-'0',cc=getchar();
return aa;
} int main() {
n=read();m=read();g[0]=1;
for(int i=1;i<=n;++i) for(int j=1;j<=m;++j) if(read()) tu[i]+=(1<<(j-1));
for(int i=0;i<(1<<m);++i) if(!(i&(i>>1))) avl[i]=1;
for(int i=1;i<=n;++i) {
for(int j=0;j<(1<<m);++j) if(g[j]&&avl[j]&&(tu[i-1]|j)==tu[i-1]) {
for(int k=0;k<(1<<m);++k) if(avl[k]&&!(j&k)&&(tu[i]|k)==tu[i]) f[k]=(f[k]+g[j])%mod;
}
memcpy(g,f,sizeof(f));
memset(f,0,sizeof(f));
}
for(int i=0;i<(1<<m);++i) ans=(ans+g[i])%mod;
printf("%d",ans);
return 0;
}

  

洛谷P1879 玉米田的更多相关文章

  1. 洛谷 P1879 玉米田(状压DP入门题)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 相关变量解释: int M,N; int plant[maxn][maxn];/ ...

  2. 洛谷 P1879 玉米田Corn Fields 题解

    题面 一道思维难度不大的状态压缩,也并不卡常,但细节处理要格外注意: f[i][j]表示前i行最后一行状态是j的方案数 #include <bits/stdc++.h> #define p ...

  3. 【学术篇】状态压缩动态规划——POJ3254/洛谷1879 玉米田Corn Field

    我要开状压dp的坑了..直播从入门到放弃系列.. 那就先拿一道状压dp的水题练练手吧.. 然后就找到了这一道..这道题使我清醒地认识到阻碍我的不是算法,而是视力= = 传送门: poj:http:// ...

  4. 洛谷P1879 [USACO06NOV]玉米田Corn Fields(状压dp)

    洛谷P1879 [USACO06NOV]玉米田Corn Fields \(f[i][j]\) 表示前 \(i\) 行且第 \(i\) 行状态为 \(j\) 的方案总数.\(j\) 的大小为 \(0 \ ...

  5. 【题解】洛谷P1879 [USACO06NOV] Corn Fields(状压DP)

    洛谷P1879:https://www.luogu.org/problemnew/show/P1879 思路 把题目翻译成人话 在n*m的棋盘 每个格子不是0就是1 1表示可以种 0表示不能种 相邻的 ...

  6. 洛谷 P1879 [USACO06NOV]玉米田 解题报告

    P1879 [USACO06NOV]玉米田Corn Fields 题目描述 农场主\(John\)新买了一块长方形的新牧场,这块牧场被划分成\(M\)行\(N\)列\((1 ≤ M ≤ 12; 1 ≤ ...

  7. 状压DP【洛谷P1879】 [USACO06NOV]玉米田Corn Fields

    P1879 [USACO06NOV]玉米田Corn Fields 农场主John新买了一块长方形的新牧场,这块牧场被划分成M行N列(1 ≤ M ≤ 12; 1 ≤ N ≤ 12),每一格都是一块正方形 ...

  8. C++ 洛谷 P1879 [USACO06NOV]玉米田Corn Fields

    没学状压DP的看一下 合法布阵问题  P1879 [USACO06NOV]玉米田Corn Fields 题意:给出一个n行m列的草地(n,m<=12),1表示肥沃,0表示贫瘠,现在要把一些牛放在 ...

  9. 洛谷 P1879 [USACO06NOV]玉米田Corn Fields 题解

    P1879 [USACO06NOV]玉米田Corn Fields 题目描述 Farmer John has purchased a lush new rectangular pasture compo ...

随机推荐

  1. WCF常见问题

    一.创建时,WCF Service中HttpContext.Current为null的解决办法 1. 在hosting WCF的web.config中加入: <system.serviceMod ...

  2. Hadoop 集群的建立与安装

  3. Tarjan求LCA(离线)

    基本思想 把要求的点对保存下来,在dfs时顺带求出来. 方法 将每个已经遍历的点指向它回溯的最高节点(遍历它的子树时指向自己),每遍历到一个点就处理它存在的询问如果另一个点已经遍历,则lca就是另一个 ...

  4. TZOJ 5094 Stringsobits(DP)

    描述 Consider an ordered set S of strings of N (1 <= N <= 31) bits. Bits, of course, are either ...

  5. 【python之路26】字符串之格式化%和format

    Python基础之杂货铺   字符串格式化 Python的字符串格式化有两种方式: 百分号方式.format方式 百分号的方式相对来说比较老,而format方式则是比较先进的方式,企图替换古老的方式, ...

  6. 洛谷1850(NOIp2016) 换教室——期望dp

    题目:https://www.luogu.org/problemnew/show/P1850 状态里记录的是”上一回有没有申请“,而不是”上一回申请成功否“,不然“申请 j 次”就没法转移了. dou ...

  7. python使用cPickle模块序列化实例

    python使用cPickle模块序列化实例 这篇文章主要介绍了python使用cPickle模块序列化的方法,是一个非常实用的技巧,本文实例讲述了python使用cPickle模块序列化的方法,分享 ...

  8. find()和find_all()的具体使用

    在我们学会了BeautifulSoup库的用法后,我们就可以使用这个库对HTML进行解析,从网页中提取我们需要的内容. 在BeautifulSoup 文档里,find().find_all()两者的定 ...

  9. linux基础指令参数

    eth0,eth1,eth2--代表网卡一,网卡二,网卡三-- lo代表127.0.0.1,即localhost 参考: Linux命令:ifconfig 功能说明:显示或设置网络设备 语 法:ifc ...

  10. mysql导入数据中文乱码解决方法

    常见的MySQL导入方法有两种 第一种方法,使用MySQL命令导入 mysql -uroot -p123456 --default-character-set=utf8 [db_name] < ...