在此之前,我写过另一篇博客,是倍增(在线)求LCA。有兴趣的同学可以去看一看。概念以及各种暴力就不在这里说了,那篇博客已经有介绍了。

不会ST算法的同学点这里


ST(RMQ)算法在线求LCA

这个算法的思想,就是将LCA问题转化成RMQ问题。

怎么将LCA转成RMQ?

我们首先用dfsO(N)遍历一遍。比如下图:



得到一个dfs序(从儿子回到父亲也要算一遍):

1->2->4->7->4->8->4->2->5->2->6->9->6->10->6->2->1->3->1

可以简单地理解成这样:你一开始在根节点,一直向下走,发现尽头就倒退,向另一个方向走。最后你还会回到根节点。你遍历这个树的顺序就是一个这样的dfs序。

有没有发现什么规律?

设r[x]表示x在这个dfs序当中第一次出现的位置,deep[x]表示x的深度。

那么可以发现,如果要求x和y的LCA,r[x]~r[y]这一段区间内一定有它们的LCA,而且还是区间中深度最小的那个。

这是为什么?

只要你懂dfs,简单思考一下就能明白。到达x点后,再到y点,必须经过过它们的LCA,因为这是一棵树,两个点之间有且只有一条路径

为什么它在区间中深度最小?

因为dfs的原因,遍历以LCA(x,y)为根的子树时,不遍历完所有以LCA(x,y)为根的点是不会回去的。然而x、y一定在以LCA(x,y)为根的子树当中,所以这也是成立的。

具体怎么做?

首先,用dfsO(n)求出dfs序、r数组和deep数组。

然后,套一个纯的ST(RMQ)。设f[i][j]表示j~j+2^i-1的点当中,deep值最小的是哪个。

预处理做完了,接下来就可以在线O(1)回答询问了。

注意事项

这个dfs序长度是2n-1的,原因:每个点经过的次数=儿子个数+1。那么所有点的儿子个数一共有n-1,因为没有根节点。所有是2n-1的。

在线O(1)回答的时候,有的人求对数使用log(x)/log(2)的形式。实际上没必要,因为C++中有个东西叫log2,直接用就好。


代码实现

例题 P3379【模板】最近公共祖先(LCA)

#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;
int n,_n,m,s;//_n是用来放元素进dfs序里,最终_n=2n-1
struct EDGE
{
int to;
EDGE* las;
} e[1000001];//前向星存边
EDGE* last[500001];
int sx[1000001];//顺序,为dfs序
int f[21][1000001];//用于ST算法
int deep[500001];//深度
int r[500001];//第一次出现的位置
void dfs(int,int,int);
int min(int a,int b){return deep[a]<deep[b]?a:b;}
int query(int,int);
int main()
{
scanf("%d%d%d",&n,&m,&s);
int i,j=0,x,y;
for (i=1;i<n;++i)
{
scanf("%d%d",&x,&y);
e[++j]={y,last[x]};
last[x]=e+j;
e[++j]={x,last[y]};
last[y]=e+j;
}
dfs(s,0,0);
//以下是ST算法
for (i=1;i<=_n;++i)
f[0][i]=sx[i];
int ni=int(log2(_n)),nj,tmp;
for (i=1;i<=ni;++i)
{
nj=_n+1-(1<<i);
tmp=1<<i-1;
for (j=1;j<=nj;++j)
f[i][j]=min(f[i-1][j],f[i-1][j+tmp]);
}
//以下是询问,对于每次询问,可以O(1)回答
while (m--)
{
scanf("%d%d",&x,&y);
printf("%d\n",query(r[x],r[y]));
}
}
void dfs(int t,int fa,int de)
{
sx[++_n]=t;
r[t]=_n;
deep[t]=de;
EDGE* ei;
for (ei=last[t];ei;ei=ei->las)
if (ei->to!=fa)
{
dfs(ei->to,t,de+1);
sx[++_n]=t;
}
}
int query(int l,int r)
{
if (l>r)
{
//交换
l^=r;
r^=l;
l^=r;
}
int k=int(log2(r-l+1));
return min(f[k][l],f[k][r-(1<<k)+1]);
}

ST(RMQ)算法(在线)求LCA的更多相关文章

  1. SPOJ 10628 Count on a tree(Tarjan离线 | RMQ-ST在线求LCA+主席树求树上第K小)

    COT - Count on a tree #tree You are given a tree with N nodes.The tree nodes are numbered from 1 to  ...

  2. Tarjan算法离线 求 LCA(最近公共祖先)

    本文是网络资料整理或部分转载或部分原创,参考文章如下: https://www.cnblogs.com/JVxie/p/4854719.html http://blog.csdn.net/ywcpig ...

  3. 求LCA最近公共祖先的离线Tarjan算法_C++

    这个Tarjan算法是求LCA的算法,不是那个强连通图的 它是 离线 算法,时间复杂度是 O(m+n),m 是询问数,n 是节点数 它的优点是比在线算法好写很多 不过有些题目是强制在线的,此类离线算法 ...

  4. 求LCA最近公共祖先的在线ST算法_C++

    ST算法是求最近公共祖先的一种 在线 算法,基于RMQ算法,本代码用双链树存树 预处理的时间复杂度是 O(nlog2n)   查询时间是 O(1) 的 另附上离线算法 Tarjan 的链接: http ...

  5. [CF 191C]Fools and Roads[LCA Tarjan算法][LCA 与 RMQ问题的转化][LCA ST算法]

    参考: 1. 郭华阳 - 算法合集之<RMQ与LCA问题>. 讲得很清楚! 2. http://www.cnblogs.com/lazycal/archive/2012/08/11/263 ...

  6. 求LCA最近公共祖先的在线倍增算法模板_C++

    倍增求 LCA 是在线的,而且比 ST 好写多了,理解起来比 ST 和 Tarjan 都容易,于是就自行脑补吧,代码写得容易看懂 关键理解 f[i][j] 表示 i 号节点的第 2j 个父亲,也就是往 ...

  7. 倍增(在线)求LCA

    这几天,提高B组总是有求LCA的题.由于我是蒟蒻,所以老是做不出来,直接上暴力.现在才弄懂. 没耐心看前面部分的大神门可以直接看后面. ST(RMQ)算法(在线)求LCA LCA是什么? 在一棵树上, ...

  8. RMQ算法 (ST算法)

     概述: RMQ(Range Minimum/Maximum Query),即区间最值查询,是指这样一个问题:对于长度为n的数列A,回答若干询问RMQ(A,i,j)(i,j<=n),返回数列A中 ...

  9. BZOJ1906树上的蚂蚁&BZOJ3700发展城市——RMQ求LCA+树链的交

    题目描述 众所周知,Hzwer学长是一名高富帅,他打算投入巨资发展一些小城市. Hzwer打算在城市中开N个宾馆,由于Hzwer非常壕,所以宾馆必须建在空中,但是这样就必须建立宾馆之间的连接通道.机智 ...

随机推荐

  1. nginx启停脚本

    安装nginx时,源码包中未带官方的启动脚本,也就无法使用service nginxd start这种启动方式,查了下资料自己写了一个: #!/bin/bash #@version: #@author ...

  2. Python 数据结构_堆栈

    目录 目录 堆栈 堆栈 堆栈是一个后进先出(LIFO)的数据结构. 堆栈这个数据结构可以用于处理大部分具有后进先出的特性的程序流 . 在堆栈中, push 和 pop 是常用术语: push: 意思是 ...

  3. 【集合框架】JDK1.8源码分析之HashMap

    一.前言 在分析jdk1.8后的HashMap源码时,发现网上好多分析都是基于之前的jdk,而Java8的HashMap对之前做了较大的优化,其中最重要的一个优化就是桶中的元素不再唯一按照链表组合,也 ...

  4. 拾遗:sed&vim

    一.sed查漏补缺 1.sed x,+y,从第x行的开始,向下连续y行(包含x行在内是y+1行!) f@z ~/testdir $ cat -n x.awk #!/usr/bin/awk -f BEG ...

  5. 使用Pyppeteer进行gmail模拟登录

    import asyncio import time from pyppeteer import launch async def gmailLogin(username, password, url ...

  6. Java设计模式(一)外观模式(门面模式)- 结构型模式

    模式的定义 门面模式(Facade Pattern)也叫做外观模式,是一种比较常用的封装模式,其定义如下:要求一个子系统的外部与其内部通信必须通过一个统一的对象进行.门面模式提供一个高层次的接口,使得 ...

  7. Python3入门机器学习经典算法与应用✍✍✍

    Python3入门机器学习经典算法与应用 整个课程都看完了,这个课程的分享可以往下看,下面有链接,之前做java开发也做了一些年头,也分享下自己看这个视频的感受,单论单个知识点课程本身没问题,大家看的 ...

  8. Victor and String HDU - 5421 双向回文树

    题意: 有n种操作,开始给你一个空串,给你4中操作 1 c  在字符串的首部添加字符c 2 c  在字符串的尾部添加字符c 3  询问字符中的本质不同的回文串的个数 4 询问字符串中回文串的个数 思路 ...

  9. jmeter在windows环境下系统参数设置

    在windows环境下搭建jmeter的压测实验环境,需要对操作系统默认的一些个参数进行设置,以提高并发能力.特别是作为压力机的时候. Socket 编程时,单机最多可以建立多少个 TCP 连接,受到 ...

  10. ES6 学习 -- 解构赋值

    一.数组解构 **数组解构,解构出来的值跟数组下标是一一对应的,如果左边变量多于右边数组,则左边后面部分变量值为undefined,如果右边数组元素个数多于左边解构变量个数,则左边变量全都有值,且一一 ...