Classification: Probabilistic Generative Model 分类:概率生成模型

如果说对于分类问题用回归的方法硬解,也就是说,将其连续化。比如 \(Class 1\) 对应的目标输出为 1, \(Class 2\) 对应 -1。
则在测试集上,结果更接近1的归为\(Class 1\),反之归为\(Class 2\)。
这样做存在的问题:如果有Error数据的干扰,会影响分类的结果。

还有就是,如果是多分类问题,则在各类之间增加了线性关系,比如认为 \(Class 3\) 比 $ Class 4$ 离 \(Class 1\) 更近,这是不对的。
另一种方法是,用\(if\)函数,不过这样的话,虽然分类更合理,但损失函数无法微分计算。

比较好的模型是概率生成模型,通过概率方式计算,(贝叶斯公式)。
其中\(P(C_1)\)和\(P(C_2)\)是先验概率

高斯分布,最大似然估计
这里选用高斯分布(其他合理的分布也可以,比如对于二元分类来说,可以假设是符合 Bernoulli distribution(伯努利分布))。
从概率上讲,任何高斯分布都可以产生样本数据,但我们需要的是最大可能性的那种分布,求出它的期望 \(\mu\) 和协方差矩阵 \(\sum\)。

求解方法就是对 \(\mu\)和\(\sum\)分别关于\(L(\mu, \sum)\)求偏微分。

最后得到的结果不是很好,只有47%正确率,即使考虑更多的参数(Overfitting),提升到7维,也只有54%。
如果说,给两个高斯分布相同的协方差矩阵(求加权平均值)的话,效果会好很多,达到了73%。因为分界线是直线,所以也把这种分类叫做线性模型。

分类问题的机器学习三步骤:

此外,假设每一个维度用概率分布模型产生出来的几率是相互独立的,所以可以将 \(P(x|C_1)\)拆解,可以认为每个 \(P(x_k|C_1)\)产生的概率都符合一维的高斯分布。
也就是此时P(x|C1)的高斯分布的协方差是对角型的(不是对角线的地方值都是0),这样就可以减少参数的量。但是结果显示这种做法不好。
这种假设所有的feature都是相互独立产生的分类叫做 Naive Bayes Classifier(朴素贝叶斯分类器)。

后验概率

经过一系列数学推导后,最后在形式上转换为了 \(w · x + b\),然后再套一个\(sigmoid\)函数就得到了最后的结果。
所以,在训练时可以直接去求w和b,这在形式上和回归模型又统一了。

【笔记】机器学习 - 李宏毅 - 5 - Classification的更多相关文章

  1. 深度学习课程笔记(二)Classification: Probility Generative Model

    深度学习课程笔记(二)Classification: Probility Generative Model  2017.10.05 相关材料来自:http://speech.ee.ntu.edu.tw ...

  2. 机器学习笔记P1(李宏毅2019)

    该博客将介绍机器学习课程by李宏毅的前两个章节:概述和回归. 视屏链接1-Introduction 视屏链接2-Regression 该课程将要介绍的内容如下所示: 从最左上角开始看: Regress ...

  3. 【笔记】机器学习 - 李宏毅 - 10 - Tips for Training DNN

    神经网络的表现 在Training Set上表现不好 ----> 可能陷入局部最优 在Testing Set上表现不好 -----> Overfitting 过拟合 虽然在机器学习中,很容 ...

  4. 【笔记】机器学习 - 李宏毅 - 1 - Introduction & next step

    Machine Learning == Looking for a Function AI过程的解释:用户输入信息,计算机经过处理,输出反馈信息(输入输出信息的形式可以是文字.语音.图像等). 因为从 ...

  5. 【笔记】机器学习 - 李宏毅 - 13 - Why Deep

    当参数一样多的时候,神经网络变得更高比变宽更有效果.为什么会这样呢? 其实和软件行业的模块化思想是一致的. 比如,如果直接对这四种分类进行训练,长发的男孩数据较少,那么这一类训练得到的classifi ...

  6. 【笔记】机器学习 - 李宏毅 - 12 - CNN

    Convolutional Neural Network CNN 卷积神经网络 1. 为什么要用CNN? CNN一般都是用来做图像识别的,当然其他的神经网络也可以做,也就是输入一张图的像素数组(pix ...

  7. 【笔记】机器学习 - 李宏毅 - 11 - Keras Demo2 & Fizz Buzz

    1. Keras Demo2 前节的Keras Demo代码: import numpy as np from keras.models import Sequential from keras.la ...

  8. 【笔记】机器学习 - 李宏毅 - 9 - Keras Demo

    3.1 configuration 3.2 寻找最优网络参数 代码示例: # 1.Step 1 model = Sequential() model.add(Dense(input_dim=28*28 ...

  9. 【笔记】机器学习 - 李宏毅 - 8 - Backpropagation

    反向传播 反向传播主要用到是链式法则. 概念: 损失函数Loss Function是定义在单个训练样本上的,也就是一个样本的误差. 代价函数Cost Function是定义在整个训练集上的,也就是所有 ...

随机推荐

  1. 如何利用开源解码项目开发js视频解码的web应用 系列

    介绍web上开发视频业务相关程序的技术演变历程 https://www.cnblogs.com/maoliangwu/articles/12046495.html 介绍ffmpeg asm.js we ...

  2. 推荐一个很棒的开源工作流elsa-core

    开源项目orchard主要开发人员Sipke Schoorstra 开源了一个netcore 工作流项目,地址:https://github.com/elsa-workflows/elsa-core, ...

  3. HDU6446 Tree and Permutation(树、推公式)

    题意: 给一棵N个点的树,对应于一个长为N的全排列,对于排列的每个相邻数字a和b,他们的贡献是对应树上顶点a和b的路径长,求所有排列的贡献和 思路: 对每一条边,边左边有x个点,右边有y个点,x+y= ...

  4. [REDIS 读书笔记]第一部分 数据结构与对象 跳跃表

    下面是跳跃表的基本原理,REDIS的实现大致相同 跳跃表的一个特点是,插入NODE是通过随机的方式来决定level的,比较奇特 下面是skipList的一个介绍,转载来的,源地址:http://ken ...

  5. 数据库主从监控脚本,数据传到influxdb

    #!/bin/bash port=`/usr/sbin/ss -ntlp | | awk '{print $4}' | awk -F":" '{print $2}'` array= ...

  6. Linux文本界面字体颜色修改

    环境 基于centos 6.5 在文本界面 系统目录的字体颜色是 黑底蓝字  严重看不清楚,对此作出修改 使用 vi 编辑   进入  /etc/DIR_COLORS 找到“DIR 01;34   # ...

  7. FTP服务器配置http访问(配置nginx+ftp服务器)

    一.搭建nginx服务器 先安装nginx服务器 # yum install nginx -y 启动nginx服务 # systemctl start nginx 浏览器访问:http://192.1 ...

  8. Vue子组件和根组件的关系

    代码: <script type="text/javascript"> const Foo = Vue.extend({ template: `<div id=& ...

  9. js+vue、纯js 按条件分页

    听说大牛都从博客开始的... 人狠话不多,翠花上酸菜代码: 有注解基本上都看的懂!但是自己还是要注意以下几点,免得以后再浪费时间. #.vue 中监听事件 v-on:change=“vueChange ...

  10. jq模糊匹配(qq:2798641729)

    图灵学院--Java高级架构师-互联网企业级实战VIP课程(价值6380)(qq:1324981084) jq是一般程序员在前台开发的时候都会使用的技术,其中模糊匹配查询在动态添加标签的时候经常用到, ...