@description@

TonyFang 打算送你一些立方体。

你需要在 [1, n] 中选择一个整数 k。在送你的立方体的体积和不超过 k 的情况下,TonyFang 会不断给你一个边长为正整数且尽可能大的立方体。

你需要求出最多能得到多少个立方体,以及在此条件下,k 的最小值和最大值。

input

一行一个整数 n。

output

三行,每行一个整数,分别表示最多立方体个数,容量最小值和容量最大值。

sample input

14

sample output

7

7

14

对于 100% 的数据,1≤n≤10^15。

@solution@

根据题目可以写出一个简单的 dp 求出每一个 k 能得到的立方体个数:dp[k] = dp[k-x^3] + 1。

其中 x 表示 k 的立方根下取整。

有一个小小的性质:当 x 足够大时,2*x^3 > (x+1)^3。通过函数增长速率可以得到这个结论。

这意味着当 x 足够大时,同一大小的立方体只会被赠予一次,否则就可以赠予更大的立方体。

考虑询问 1~n 的中的答案,我们可以将 1~n 分为两块:1~v^3-1 与 v^3~n,其中 v 是 n 的立方根下取整。

因为 n <= 10^15,v 的取值最多只有 10^5。现在假设我们可以通过某种手段预处理出 1~v^3-1 的答案,询问 v^3~n 的答案是多少。

由我们上面那个 dp,可以得到 dp[v^3+d] = dp[d] + 1,现在问题转变为求解 0~n-v^3 的答案,再通过一点小小的变化即可得到 v^3~n 的答案。

可以发现这是一个与原问题类似,只是规模更小的子问题。

这样递归,由我们推导的性质可得,每次问题的规模至少减为原规模一半,故只会递归 log 次。

同时为了保证上面的性质成立(即要求 x 足够大的条件成立),我们可以预先处理出 1~50^3 (50^3 = 1.25*10^5)中的所有答案,当规模在这个范围的时候可以直接得到答案。

再考虑怎么预处理 1~v^3 的答案。可以将它拆成 1~(v-1)^3-1 与 (v-1)3~v3,然后仿照上面的方法即可。

题解中采用的是贪心的做法,但我觉得可能这个方法(对我而言)要直观一些。

@accepted code@

#include<cmath>
#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN = 125000 - 1;
const int MAXM = 100000;
typedef long long ll;
ll dp[MAXN + 5], f1[MAXN + 5], f2[MAXN + 5], f3[MAXN + 5];
ll g1[MAXM + 5], g2[MAXM + 5], g3[MAXM + 5];
ll pow3(ll x) {return x*x*x;}
ll cub(ll x) {
ll le = 1, ri = MAXM;
while( le < ri ) {
ll mid = (le + ri + 1) >> 1;
if( pow3(mid) > x ) ri = mid - 1;
else le = mid;
}
return le;
}
void update(ll a, ll b, ll c, ll &x, ll &y, ll &z) {
if( a > x )
x = a, y = b, z = c;
else if( a == x )
y = min(y, b), z = max(z, c);
}
void solve(ll x, ll ri, ll &a, ll &b, ll &c) {
ll le = pow3(x);
if( ri-le <= MAXN )
a = f1[ri-le], b = f2[ri-le], c = f3[ri-le];
else {
ll p = cub(ri-le);
solve(p, ri-le, a, b, c);
update(g1[p-1], g2[p-1], g3[p-1], a, b, c);
}
a++, b += le, c += le;
}
void init() {
int x = 1;
for(int i=1;i<=MAXN;i++)
dp[i] = dp[i-pow3(cub(i))] + 1;
for(int i=1;i<=MAXN;i++) {
f1[i] = dp[i], f2[i] = f3[i] = i;
update(f1[i-1], f2[i-1], f3[i-1], f1[i], f2[i], f3[i]);
}
for(int i=1;i<MAXM;i++) {
ll x = pow3(i+1);
if( x-1 <= MAXN )
g1[i] = f1[x-1], g2[i] = f2[x-1], g3[i] = f3[x-1];
else {
solve(i, x-1, g1[i], g2[i], g3[i]);
update(g1[i-1], g2[i-1], g3[i-1], g1[i], g2[i], g3[i]);
}
}
}
int main() {
ll n; init();
scanf("%lld", &n);
if( n <= MAXN ) {
printf("%lld\n%lld\n%lld\n", f1[n], f2[n], f3[n]);
return 0;
}
ll x = cub(n), res1, res2, res3;
solve(x, n, res1, res2, res3);
update(g1[x-1], g2[x-1], g3[x-1], res1, res2, res3);
printf("%lld\n%lld\n%lld\n", res1, res2, res3);
}

@details@

好像 zxb 大佬用了打表+二分跑得飞快。。。总耗时 0ms。。。

感觉这道题乱搞的方法好多啊。

然而正解的贪心基本没人写23333

@noi.ac - 171@ 立方体的更多相关文章

  1. # NOI.AC省选赛 第五场T1 子集,与&最大值

    NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...

  2. NOI.ac #31 MST DP、哈希

    题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...

  3. NOI.AC NOIP模拟赛 第五场 游记

    NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...

  4. NOI.AC NOIP模拟赛 第六场 游记

    NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...

  5. NOI.AC NOIP模拟赛 第二场 补记

    NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...

  6. NOI.AC NOIP模拟赛 第一场 补记

    NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...

  7. NOI.AC NOIP模拟赛 第四场 补记

    NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...

  8. NOI.AC NOIP模拟赛 第三场 补记

    NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...

  9. NOI.AC WC模拟赛

    4C(容斥) http://noi.ac/contest/56/problem/25 同时交换一行或一列对答案显然没有影响,于是将行列均从大到小排序,每次处理限制相同的一段行列(呈一个L形). 问题变 ...

随机推荐

  1. 深入理解PHP类的自动载入机制方法

    第一种情况:文件A.php中内容如下 <?phpclass A{ public function __construct(){ echo 'fff'; }}?> 文件C.php 中内容如下 ...

  2. Liferay 7:Liferay Nexus

    Liferay私服地址:https://repository.liferay.com/nexus/content/repositories/liferay-public-releases/

  3. Data Lake Analytics IP白名单设置攻略

    当我们成功开通了 DLA 服务之后,第一个最想要做的事情就是登录 DLA 数据库.而登录数据库就需要一个连接串.下面这个页面是我们首次开通 DLA 之后的界面,在这里我们要创建一个服务访问点. 在上面 ...

  4. Django项目:CRM(客户关系管理系统)--03--02PerfectCRM创建ADMIN页面01

    八.CRM项目创建king_admin python.exe manage.py startapp king_admin 'king_admin', 九.CRM项目分发URL "" ...

  5. centos7默认安装没有连接网络

    1.显示所有连接 #nmcli con show 2.连接网络 #nmcli con up ens33 这个ens33是通过第一步查到的 /etc/sysconfig/network-scripts目 ...

  6. org.dom4j.Document 解析xml

    1.Java代码 Document doc = DocumentHelper.parseText(xml); // Element rootE = doc.getRootElement(); List ...

  7. Struts framework

    Struts功能详解——ActionMapping对象 Struts旅程(一)Struts简介和原理 实例讲解DispatchAction和LookupDispatchAction DispatchA ...

  8. C# 如何比较版本号大小

    最近遇到了一个数据迁移的问题,因为配置文件的结构发生变化,所以要把低版本的用户数据保存下来,存到最新版本中去. 这里就有一个比较版本号大小的问题了,网上乱七八糟算法一堆,大致意思就是用分割字符串的方法 ...

  9. Leetcode717.1-bit and 2-bit Characters1比特与2比特字符

    有两种特殊字符.第一种字符可以用一比特0来表示.第二种字符可以用两比特(10 或 11)来表示. 现给一个由若干比特组成的字符串.问最后一个字符是否必定为一个一比特字符.给定的字符串总是由0结束. 示 ...

  10. 《2019上半年DDoS攻击态势报告》发布:应用层攻击形势依然严峻,海量移动设备成新一代肉鸡

    2019年上半年,阿里云安全团队平均每天帮助用户防御2500余次DDoS攻击,与2018年持平.目前阿里云承载着中国40%网站流量,为全球上百万客户提供基础安全防御.可以说,阿里云上的DDoS攻防态势 ...