@noi.ac - 171@ 立方体
@description@
TonyFang 打算送你一些立方体。
你需要在 [1, n] 中选择一个整数 k。在送你的立方体的体积和不超过 k 的情况下,TonyFang 会不断给你一个边长为正整数且尽可能大的立方体。
你需要求出最多能得到多少个立方体,以及在此条件下,k 的最小值和最大值。
input
一行一个整数 n。
output
三行,每行一个整数,分别表示最多立方体个数,容量最小值和容量最大值。
sample input
14
sample output
7
7
14
对于 100% 的数据,1≤n≤10^15。
@solution@
根据题目可以写出一个简单的 dp 求出每一个 k 能得到的立方体个数:dp[k] = dp[k-x^3] + 1。
其中 x 表示 k 的立方根下取整。
有一个小小的性质:当 x 足够大时,2*x^3 > (x+1)^3。通过函数增长速率可以得到这个结论。
这意味着当 x 足够大时,同一大小的立方体只会被赠予一次,否则就可以赠予更大的立方体。
考虑询问 1~n 的中的答案,我们可以将 1~n 分为两块:1~v^3-1 与 v^3~n,其中 v 是 n 的立方根下取整。
因为 n <= 10^15,v 的取值最多只有 10^5。现在假设我们可以通过某种手段预处理出 1~v^3-1 的答案,询问 v^3~n 的答案是多少。
由我们上面那个 dp,可以得到 dp[v^3+d] = dp[d] + 1,现在问题转变为求解 0~n-v^3 的答案,再通过一点小小的变化即可得到 v^3~n 的答案。
可以发现这是一个与原问题类似,只是规模更小的子问题。
这样递归,由我们推导的性质可得,每次问题的规模至少减为原规模一半,故只会递归 log 次。
同时为了保证上面的性质成立(即要求 x 足够大的条件成立),我们可以预先处理出 1~50^3 (50^3 = 1.25*10^5)中的所有答案,当规模在这个范围的时候可以直接得到答案。
再考虑怎么预处理 1~v^3 的答案。可以将它拆成 1~(v-1)^3-1 与 (v-1)3~v3,然后仿照上面的方法即可。
题解中采用的是贪心的做法,但我觉得可能这个方法(对我而言)要直观一些。
@accepted code@
#include<cmath>
#include<cstdio>
#include<algorithm>
using namespace std;
const int MAXN = 125000 - 1;
const int MAXM = 100000;
typedef long long ll;
ll dp[MAXN + 5], f1[MAXN + 5], f2[MAXN + 5], f3[MAXN + 5];
ll g1[MAXM + 5], g2[MAXM + 5], g3[MAXM + 5];
ll pow3(ll x) {return x*x*x;}
ll cub(ll x) {
ll le = 1, ri = MAXM;
while( le < ri ) {
ll mid = (le + ri + 1) >> 1;
if( pow3(mid) > x ) ri = mid - 1;
else le = mid;
}
return le;
}
void update(ll a, ll b, ll c, ll &x, ll &y, ll &z) {
if( a > x )
x = a, y = b, z = c;
else if( a == x )
y = min(y, b), z = max(z, c);
}
void solve(ll x, ll ri, ll &a, ll &b, ll &c) {
ll le = pow3(x);
if( ri-le <= MAXN )
a = f1[ri-le], b = f2[ri-le], c = f3[ri-le];
else {
ll p = cub(ri-le);
solve(p, ri-le, a, b, c);
update(g1[p-1], g2[p-1], g3[p-1], a, b, c);
}
a++, b += le, c += le;
}
void init() {
int x = 1;
for(int i=1;i<=MAXN;i++)
dp[i] = dp[i-pow3(cub(i))] + 1;
for(int i=1;i<=MAXN;i++) {
f1[i] = dp[i], f2[i] = f3[i] = i;
update(f1[i-1], f2[i-1], f3[i-1], f1[i], f2[i], f3[i]);
}
for(int i=1;i<MAXM;i++) {
ll x = pow3(i+1);
if( x-1 <= MAXN )
g1[i] = f1[x-1], g2[i] = f2[x-1], g3[i] = f3[x-1];
else {
solve(i, x-1, g1[i], g2[i], g3[i]);
update(g1[i-1], g2[i-1], g3[i-1], g1[i], g2[i], g3[i]);
}
}
}
int main() {
ll n; init();
scanf("%lld", &n);
if( n <= MAXN ) {
printf("%lld\n%lld\n%lld\n", f1[n], f2[n], f3[n]);
return 0;
}
ll x = cub(n), res1, res2, res3;
solve(x, n, res1, res2, res3);
update(g1[x-1], g2[x-1], g3[x-1], res1, res2, res3);
printf("%lld\n%lld\n%lld\n", res1, res2, res3);
}
@details@
好像 zxb 大佬用了打表+二分跑得飞快。。。总耗时 0ms。。。
感觉这道题乱搞的方法好多啊。
然而正解的贪心基本没人写23333
@noi.ac - 171@ 立方体的更多相关文章
- # NOI.AC省选赛 第五场T1 子集,与&最大值
NOI.AC省选赛 第五场T1 A. Mas的童年 题目链接 http://noi.ac/problem/309 思路 0x00 \(n^2\)的暴力挺简单的. ans=max(ans,xor[j-1 ...
- NOI.ac #31 MST DP、哈希
题目传送门:http://noi.ac/problem/31 一道思路好题考虑模拟$Kruskal$的加边方式,然后能够发现非最小生成树边只能在一个已经由边权更小的边连成的连通块中,而树边一定会让两个 ...
- NOI.AC NOIP模拟赛 第五场 游记
NOI.AC NOIP模拟赛 第五场 游记 count 题目大意: 长度为\(n+1(n\le10^5)\)的序列\(A\),其中的每个数都是不大于\(n\)的正整数,且\(n\)以内每个正整数至少出 ...
- NOI.AC NOIP模拟赛 第六场 游记
NOI.AC NOIP模拟赛 第六场 游记 queen 题目大意: 在一个\(n\times n(n\le10^5)\)的棋盘上,放有\(m(m\le10^5)\)个皇后,其中每一个皇后都可以向上.下 ...
- NOI.AC NOIP模拟赛 第二场 补记
NOI.AC NOIP模拟赛 第二场 补记 palindrome 题目大意: 同[CEOI2017]Palindromic Partitions string 同[TC11326]Impossible ...
- NOI.AC NOIP模拟赛 第一场 补记
NOI.AC NOIP模拟赛 第一场 补记 candy 题目大意: 有两个超市,每个超市有\(n(n\le10^5)\)个糖,每个糖\(W\)元.每颗糖有一个愉悦度,其中,第一家商店中的第\(i\)颗 ...
- NOI.AC NOIP模拟赛 第四场 补记
NOI.AC NOIP模拟赛 第四场 补记 子图 题目大意: 一张\(n(n\le5\times10^5)\)个点,\(m(m\le5\times10^5)\)条边的无向图.删去第\(i\)条边需要\ ...
- NOI.AC NOIP模拟赛 第三场 补记
NOI.AC NOIP模拟赛 第三场 补记 列队 题目大意: 给定一个\(n\times m(n,m\le1000)\)的矩阵,每个格子上有一个数\(w_{i,j}\).保证\(w_{i,j}\)互不 ...
- NOI.AC WC模拟赛
4C(容斥) http://noi.ac/contest/56/problem/25 同时交换一行或一列对答案显然没有影响,于是将行列均从大到小排序,每次处理限制相同的一段行列(呈一个L形). 问题变 ...
随机推荐
- Vue. 之 Element table 高度自适应
Vue. 之 Element table 高度自适应 使用vue创建table后,其高度自适应浏览器高度. 在创建的 el-table 中添加:height属性,其值为一个变量(tableHeight ...
- 系统日志和内核消息 $ dmesg$ less /var/log/messages$ less /var/log/secure$ less /var/log/auth
查看错误和警告消息,比如看看是不是很多关于连接数过多导致? 看看是否有硬件错误或文件系统错误? 分析是否能将这些错误事件和前面发现的疑点进行时间上的比对.
- P1561 [USACO12JAN]爬山Mountain Climbing
P1561 [USACO12JAN]爬山Mountain Climbing 题目描述 Farmer John has discovered that his cows produce higher q ...
- 模拟4题解 T1礼物
T1 题目描述 夏川的生日就要到了.作为夏川形式上的男朋友,季堂打算给夏川买一些生 日礼物. 商店里一共有种礼物.夏川每得到一种礼物,就会获得相应喜悦值Wi(每种 礼物的喜悦值不能重复获得). 每次, ...
- bzoj2049: [Sdoi2008]Cave 洞穴探测
bzoj2049: [Sdoi2008]Cave 洞穴探测 给n个点,每次连接两个点或切断一条边,保证是树结构,多次询问两个点是否联通 Lct裸题 //Achen #include<algori ...
- toString方法和valueof()方法的区别
JavaScript引用类型之Array数组的toString()和valueof()方法的区别 一.转换方法 1.在JavaScript中几乎所有对象都具有toLocaleString().to ...
- POJ 1061 扩展欧几里得
#include<stdio.h> #include<string.h> typedef long long ll; void gcd(ll a,ll b,ll& d, ...
- Tiles Framework
tiles framework 详解tiles framework 详解 就是一个页面模版引擎.可以渲染页面,属于视图层. 下面给你拷贝一份详细的tiles介绍,你可以初步了解一下. Tiles框架特 ...
- xml-apis.jar getTextContent() jar包冲突解决(getTextContent()方法无法找到)
1.引用包: import org.w3c.dom.Document;import org.w3c.dom.Element;import org.w3c.dom.NodeList; 2.方法中应用: ...
- 【JZOJ5071】【GDSOI2017第二轮模拟】奶酪 树形dp
题面 CJY很喜欢吃奶酪,于是YJC弄到了一些奶酪,现在YJC决定和CJY分享奶酪. YJC弄到了n-1块奶酪,于是他把奶酪挂在了一棵n个结点的树上,每根树枝上挂一块奶酪,每块奶酪都有重量. YJC和 ...