【转】https://blog.csdn.net/mingzhuo_126/article/details/88044390

二.编程实现
考滤到DFT和IDFT算法过程中有部分相似,可以把它们合成到一个算法。

/*
x-存放要变换数据的实部
y-存放要变换数据的虚部
a-存放变换结果的实部
b-存放变换结果的虚部
n-数据长度
sign-为1时执行DFT,为-1时执行IDFT
*/
#include "math.h"
void dft(x,y,a,b,n,sign)
int n, sign;
double x[],y[],a[],b[];
{
int i,k;
double c,d,q,w,s;
q = 6.28318530718/n;
for (k=;k<n;k++)
{
w=k*q;
a[k]=b[k]=0.0;
for(i=;i<n;i++)
{
d=i*w;
c=cos(d);
s=sin(d)*sign;
a[k]+=c*x[i] + s*y[i];
b[k]+=c*y[i] - s*x[i];
}
}
if(sign == -)
{
c=1.0/n;
for (k=;k<n;k++)
{
a[k]=c*a[k];
b[k]=c*b[k];
}
}
}

下面验证此算法,对X(n)=(0,1,2,3,4,5,6,7),做DFT和IDFT算法

dft_d.c

#include "stdio.h"
#include "math.h"
#include "dft.c"
#define N 4
static double x[N],y[N],a[N],b[N],c[N];
main(){
int k;
int i=;
for(i=; i<N; i++)
{
x[i]=i;
y[i]=; }
dft(x,y,a,b,N,); //DFT变换
for(i=; i<N; i++)
{
c[i]=sqrt(a[i]*a[i]+b[i]*b[i]); //算出模
printf("%lf + j %lf \n",a[i],b[i]);//输出变换后结果
printf("%lf \n",c[i]); //输出模值
printf("\n");
}
dft(a,b,x,y,N,-); //IDFT变换
for(i=; i<N; i++)
{
printf("%lf \n",x[i]); //输出x(n)的实部
} }

运行结果:

DFT与IDFT的更多相关文章

  1. 基2时域抽取FFT、IFFT的C++实现代码,另附DFT与IDFT的原始实现--转1

    介绍网络上的原理介绍非常丰富,具体请自行搜索网络资源. 本算法依靠FFT流图进行布置. 算法 ##进行完所有的原理推导后,我们可以得到如下的16点FFT流图: 通过上图可以看出整个流图输入序列的顺序已 ...

  2. 信号处理之DFT、IDFT

    一.DFT之前言部分 由于matlab已提供了内部函数来计算DFT.IDFT,我们只需要会调用fft.ifft函数就行: 二.函数说明: fft(x):计算N点的DFT.N是序列x的长度,即N=len ...

  3. 初探 FFT/DFT

    有用的学习链接&书籍 傅立叶变化-维基百科 离散傅立叶变化-维基百科·长整数与多项式乘法 维基百科看英文的更多内容&有趣的图 快速傅立叶变化-百度百科,注意其中的图! 组合数学(第4版 ...

  4. 傅里叶变换 - Fourier Transform

    傅里叶级数 傅里叶在他的专著<热的解析理论>中提出,任何一个周期函数都可以表示为若干个正弦函数的和,即: \[f(t)=a_0+\sum_{n=1}^{\infty}(a_ncos(n\o ...

  5. 一个蒟蒻对FFT的理解(蒟蒻也能看懂的FFT)

    建议同学们先自学一下"复数(虚数)"的性质.运算等知识,不然看这篇文章有很大概率看不懂. 前言 作为一个典型的蒟蒻,别人的博客都看不懂,只好自己写一篇了. 膜拜机房大佬 HY 一. ...

  6. 「快速傅里叶变换(FFT)」学习笔记

    FFT即快速傅里叶变换,离散傅里叶变换及其逆变换的快速算法.在OI中用来优化多项式乘法. 本文主要目的是便于自己整理.复习 FFT的算法思路 已知两个多项式的系数表达式,要求其卷积的系数表达式. 先将 ...

  7. 拆系数FFT

    学习内容:国家集训队2016论文 - 再谈快速傅里叶变换 模板题:http://uoj.ac/problem/34 1.基本介绍 对长度为L的\(A(x),B(x)\)进行DFT,可以利用 \[ \b ...

  8. FFT学习笔记

    快速傅里叶变换FFT(Fast Fourior Transform) 先说一下它能干嘛qwq ​ 傅里叶变换有两种,连续傅里叶变换和离散傅里叶变换,OI中主要用来快速计算多项式卷积. 等一下,卷积是啥 ...

  9. FFT什么的

    目录 多项式 多项式加法 多项式乘法 多项式的表示 系数表达 点值表达 系数形式表示的多项式的快速乘法 DFT&FFT&IDFT 单位复数根 DFT FFT IDFT 多项式乘法 蝶形 ...

随机推荐

  1. ajax的状态

    readyState:ajax对象的状态值,客户端与客户的交互过程 0:未初始化 1:已经调用了open方法 2:已经接收到响应头 3:已经接受了一部分数据(存在相应正文里) 4:已经接受了全部数据 ...

  2. HTML静态网页--表单验证和事件

    1.表单验证<form></form> (1).非空验证(去空格) (2).对比验证(跟一个值对比) (3).范围验证(根据一个范围进行判断) (4).固定格式验证:电话号码, ...

  3. Python--day25--抽象类

    什么是抽象类: 抽象类: #一切皆文件 import abc #利用abc模块实现抽象类 class All_file(metaclass=abc.ABCMeta): all_type='file' ...

  4. [转载] Solaris命令使用

    摘自: http://www.jb51.net/os/Solaris/18533.html   ★6. rm 删除文件 命令格式: rm [-r] filename (filename 可为档名,或档 ...

  5. java List接口

    Collection子接口: List是有序的集合,集合中每个元素都有对应的顺序序列.List集合可使用重复元素,可以通过索引来访问指定位置的集合元素(顺序索引从0开始),List集合默认按元素的添加 ...

  6. VisualStudio 扩展开发 获得输出窗口内容

    本文告诉大家如何拿到 VisualStudio 输出窗口的内容 在上一篇告诉大家如何开发添加菜单 点击的时候可以使用方法,如果需要拿到 VisualStudio 的输出窗口的内容,如想要开发一个插件, ...

  7. 9月29更新美版T-mobile版本iPhone7代和7P有锁机卡贴解锁方法

    ​ T版是块难解的砖头,之前一直没有找到稳定解锁办法,经过多次不写努力和实验,终于解决 不管是用超雪卡贴还是GPP卡贴,第一次先用连接WIFI激活手机! 注意:一定不要用ICCID通用激活,或者是TM ...

  8. MFC 封装类为静态链接库

    mfc自带的基本控件都不怎么美观,所以一般开发者都会自定义类对控件进行重绘.手里也积累了不少控件的重绘,对对话框.静态文本.列表框等. 但是每次都要把这些类重新导入到新的工程里,比较麻烦,而且我也不想 ...

  9. codeforces gym100801 Problem G. Graph

    传送门:https://codeforces.com/gym/100801 题意: 给你一个DAG图,你最多可以进行k次操作,每次操作可以连一条有向边,问你经过连边操作后最小拓扑序的最大值是多少 题解 ...

  10. Channel 9视频整理【4】

    Eric ShangKuan 目前服務於台灣微軟,擔任技術傳教士 (Technical Evangelist) 一職,網路上常用的 ID 為 ericsk,對於各項開發技術如:Web.Mobile.A ...