DFT与IDFT
【转】https://blog.csdn.net/mingzhuo_126/article/details/88044390
二.编程实现
考滤到DFT和IDFT算法过程中有部分相似,可以把它们合成到一个算法。
/*
x-存放要变换数据的实部
y-存放要变换数据的虚部
a-存放变换结果的实部
b-存放变换结果的虚部
n-数据长度
sign-为1时执行DFT,为-1时执行IDFT
*/
#include "math.h"
void dft(x,y,a,b,n,sign)
int n, sign;
double x[],y[],a[],b[];
{
int i,k;
double c,d,q,w,s;
q = 6.28318530718/n;
for (k=;k<n;k++)
{
w=k*q;
a[k]=b[k]=0.0;
for(i=;i<n;i++)
{
d=i*w;
c=cos(d);
s=sin(d)*sign;
a[k]+=c*x[i] + s*y[i];
b[k]+=c*y[i] - s*x[i];
}
}
if(sign == -)
{
c=1.0/n;
for (k=;k<n;k++)
{
a[k]=c*a[k];
b[k]=c*b[k];
}
}
}
下面验证此算法,对X(n)=(0,1,2,3,4,5,6,7),做DFT和IDFT算法
dft_d.c
#include "stdio.h"
#include "math.h"
#include "dft.c"
#define N 4
static double x[N],y[N],a[N],b[N],c[N];
main(){
int k;
int i=;
for(i=; i<N; i++)
{
x[i]=i;
y[i]=; }
dft(x,y,a,b,N,); //DFT变换
for(i=; i<N; i++)
{
c[i]=sqrt(a[i]*a[i]+b[i]*b[i]); //算出模
printf("%lf + j %lf \n",a[i],b[i]);//输出变换后结果
printf("%lf \n",c[i]); //输出模值
printf("\n");
}
dft(a,b,x,y,N,-); //IDFT变换
for(i=; i<N; i++)
{
printf("%lf \n",x[i]); //输出x(n)的实部
} }
运行结果:
DFT与IDFT的更多相关文章
- 基2时域抽取FFT、IFFT的C++实现代码,另附DFT与IDFT的原始实现--转1
介绍网络上的原理介绍非常丰富,具体请自行搜索网络资源. 本算法依靠FFT流图进行布置. 算法 ##进行完所有的原理推导后,我们可以得到如下的16点FFT流图: 通过上图可以看出整个流图输入序列的顺序已 ...
- 信号处理之DFT、IDFT
一.DFT之前言部分 由于matlab已提供了内部函数来计算DFT.IDFT,我们只需要会调用fft.ifft函数就行: 二.函数说明: fft(x):计算N点的DFT.N是序列x的长度,即N=len ...
- 初探 FFT/DFT
有用的学习链接&书籍 傅立叶变化-维基百科 离散傅立叶变化-维基百科·长整数与多项式乘法 维基百科看英文的更多内容&有趣的图 快速傅立叶变化-百度百科,注意其中的图! 组合数学(第4版 ...
- 傅里叶变换 - Fourier Transform
傅里叶级数 傅里叶在他的专著<热的解析理论>中提出,任何一个周期函数都可以表示为若干个正弦函数的和,即: \[f(t)=a_0+\sum_{n=1}^{\infty}(a_ncos(n\o ...
- 一个蒟蒻对FFT的理解(蒟蒻也能看懂的FFT)
建议同学们先自学一下"复数(虚数)"的性质.运算等知识,不然看这篇文章有很大概率看不懂. 前言 作为一个典型的蒟蒻,别人的博客都看不懂,只好自己写一篇了. 膜拜机房大佬 HY 一. ...
- 「快速傅里叶变换(FFT)」学习笔记
FFT即快速傅里叶变换,离散傅里叶变换及其逆变换的快速算法.在OI中用来优化多项式乘法. 本文主要目的是便于自己整理.复习 FFT的算法思路 已知两个多项式的系数表达式,要求其卷积的系数表达式. 先将 ...
- 拆系数FFT
学习内容:国家集训队2016论文 - 再谈快速傅里叶变换 模板题:http://uoj.ac/problem/34 1.基本介绍 对长度为L的\(A(x),B(x)\)进行DFT,可以利用 \[ \b ...
- FFT学习笔记
快速傅里叶变换FFT(Fast Fourior Transform) 先说一下它能干嘛qwq 傅里叶变换有两种,连续傅里叶变换和离散傅里叶变换,OI中主要用来快速计算多项式卷积. 等一下,卷积是啥 ...
- FFT什么的
目录 多项式 多项式加法 多项式乘法 多项式的表示 系数表达 点值表达 系数形式表示的多项式的快速乘法 DFT&FFT&IDFT 单位复数根 DFT FFT IDFT 多项式乘法 蝶形 ...
随机推荐
- 使用提示(Hints)
对于表的访问,可以使用两种Hints. FULL 和 ROWID FULL hint 告诉ORACLE使用全表扫描的方式访问指定表. 例如: SELECT /*+ FULL(EMP) */ * FRO ...
- H3C OSPF协议工作过程概述
- Vue打包文件放在服务器,浏览器存在缓存问题的解决
在入口文件index.html添加 <meta http-equiv="pragram" content="no-cache"> <meta ...
- 微信里首次跳转会到首页问题(window.location失效)
将window.location.href 换为location.href
- VSCode提示没有权限,无法保存文件问题
重装了系统之后,重新打开了VSCode发现无法保存修改的文件,激活系统后发现还是无法保存文件,都是提示权限问题,原因在于文件夹权限继承并不是我所登录的这个用户,接着我试着按照网上的方法,在文件夹后,右 ...
- WPF 设置纯软件渲染
最近看到有小伙伴说 WPF 使用硬件渲染,如何让 WPF 不使用硬件渲染,因为他觉得性能太好了.万一这个版本发布了,产品经理说下个版本要提升性能就不好了.于是就找到一个快速的方法,让程序不使用硬件渲染 ...
- QT中加载动态链接库
一.添加第三方的头文件 这个问题再简单不过了,不过我还是要说下. 首先,添加头文件 #include "ControlCAN.h" 然后,再将这个头文件放到工程的目录下,就OK了 ...
- vue新增属性响应式更新的问题
根据官方文档定义: 如果在实例创建之后添加新的属性到实例上,它不会触发视图更新. 受现代 JavaScript 的限制 (以及废弃 Object.observe),Vue 不能检测到对象属性的添加或删 ...
- basedir的介绍
os内置dirname方法就是文件目录的往上找一级 #得到当前文件名或者路径 if __name__ == "__main__": print(__file__) #这是os的一个 ...
- springboot 动态修改定时任务
1.静态定时 1)启动类加上注解@EnableScheduling @EnableAsync @EnableScheduling @SpringBootApplication @MapperScan( ...