7种最常见的Hadoop和Spark项目
7种最常见的Hadoop和Spark项目
如果您的Hadoop项目将有新的突破,那么它必定与下边介绍的七种常见项目很相像。
有一句古老的格言是这样说的,如果你向某人提供你的全部支持和金融支持去做一些不同的和创新的事情,他们最终却会做别人正在做的事情。如比较火爆的Hadoop、Spark和Storm,每个人都认为他们正在做一些与这些新的大数据技术相关的事情,但它不需要很长的时间遇到相同的模式。具体的实施可能有所不同,但根据我的经验,它们是最常见的七种项目。
项目一:数据整合
称之为“企业级数据中心”或“数据湖”,这个想法是你有不同的数据源,你想对它们进行数据分析。这类项目包括从所有来源获得数据源(实时或批处理) 并且把它们存储在hadoop中。有时,这是成为一个“数据驱动的公司”的第一步;有时,或许你仅仅需要一份漂亮的报告。“企业级数据中心”通常由 HDFS文件系统和HIVE或IMPALA中的表组成。未来,HBase和Phoenix在大数据整合方面将大展拳脚,打开一个新的局面,创建出全新的数 据美丽新世界。
销售人员喜欢说“读模式”,但事实上,要取得成功,你必须清楚的了解自己的用例将是什么(Hive模式不会看起来与你在企业数据仓库中所做的不一 样)。真实的原因是一个数据湖比Teradata和Netezza公司有更强的水平扩展性和低得多的成本。许多人在做前端分析时使用Tabelu和 Excel。许多复杂的公司以“数据科学家”用Zeppelin或IPython笔记本作为前端。
项目二:专业分析
许多数据整合项目实际上是从你特殊的需求和某一数据集系统的分析开始的。这些往往是令人难以置信的特定领域,如在银行领域的流动性风险/蒙特卡罗模 拟分析。在过去,这种专业的分析依赖于过时的,专有的软件包,无法扩大数据的规模经常遭受一个有限的功能集(大部分是因为软件厂商不可能像专业机构那样了 解的那么多)。
在Hadoop和Spark的世界,看看这些系统大致相同的数据整合系统,但往往有更多的HBase,定制非SQL代码,和更少的数据来源(如果不是唯一的)。他们越来越多地以Spark为基础。
项目三:Hadoop作为一种服务
在“专业分析”项目的任何大型组织(讽刺的是,一个或两个“数据整理”项目)他们会不可避免地开始感觉“快乐”(即,疼痛)管理几个不同配置的 Hadoop集群,有时从不同的供应商。接下来,他们会说,“也许我们应该整合这些资源池,”而不是大部分时间让大部分节点处于资源闲置状态。它们应该组 成云计算,但许多公司经常会因为安全的原因(内部政治和工作保护)不能或不会。这通常意味着很多Docker容器包。
我没有使用它,但最近Bluedata(蓝色数据国际中心)似乎有一个解决方案,这也会吸引小企业缺乏足够的资金来部署Hadoop作为一种服务。
项目四:流分析
很多人会把这个“流”,但流分析是不同的,从设备流。通常,流分析是一个组织在批处理中的实时版本。以反洗钱和欺诈检测:为什么不在交易的基础上,抓住它发生而不是在一个周期结束?同样的库存管理或其他任何。
在某些情况下,这是一种新的类型的交易系统,分析数据位的位,因为你将它并联到一个分析系统中。这些系统证明自己如Spark或Storm与 Hbase作为常用的数据存储。请注意,流分析并不能取代所有形式的分析,对某些你从未考虑过的事情而言,你仍然希望分析历史趋势或看过去的数据。
项目五:复杂事件处理
在这里,我们谈论的是亚秒级的实时事件处理。虽然还没有足够快的超低延迟(皮秒或纳秒)的应用,如高端的交易系统,你可以期待毫秒响应时间。例子包 括对事物或事件的互联网电信运营商处理的呼叫数据记录的实时评价。有时,你会看到这样的系统使用Spark和HBase——但他们一般落在他们的脸上,必 须转换成Storm,这是基于由LMAX交易所开发的干扰模式。
在过去,这样的系统已经基于定制的消息或高性能,从货架上,客户端-服务器消息产品-但今天的数据量太多了。我还没有使用它,但Apex项目看起来很有前途,声称要比Storm快。
项目六:ETL流
有时你想捕捉流数据并把它们存储起来。这些项目通常与1号或2号重合,但增加了各自的范围和特点。(有些人认为他们是4号或5号,但他们实际上是在 向磁盘倾倒和分析数据。),这些几乎都是Kafka和Storm项目。Spark也使用,但没有理由,因为你不需要在内存分析。
项目七:更换或增加SAS
SAS是精细,是好的但SAS也很贵,我们不需要为你的数据科学家和分析师买存储你就可以“玩”数据。此外,除SAS可以做或产生漂亮的图形分析 外,你还可以做一些不同的事情。这是你的“数据湖”。这里是IPython笔记本(现在)和Zeppelin(以后)。我们用SAS存储结果。
当我每天看到其他不同类型的Hadoop,Spark,或Storm项目,这些都是正常的。如果你使用Hadoop,你可能了解它们。几年前我已经实施了这些项目中的部分案例,使用的是其它技术。
如果你是一个老前辈太害怕“大”或“做”大数据Hadoop,不要担心。事情越变越多,但本质保持不变。你会发现很多相似之处的东西你用来部署和时髦的技术都是围绕Hadooposphere旋转的。
7种最常见的Hadoop和Spark项目的更多相关文章
- 常见的七种Hadoop和Spark项目案例
常见的七种Hadoop和Spark项目案例 有一句古老的格言是这样说的,如果你向某人提供你的全部支持和金融支持去做一些不同的和创新的事情,他们最终却会做别人正在做的事情.如比较火爆的Hadoop.Sp ...
- Hadoop与Spark比较
先看这篇文章:http://www.huochai.mobi/p/d/3967708/?share_tid=86bc0ba46c64&fmid=0 直接比较Hadoop和Spark有难度,因为 ...
- Hadoop概念学习系列之Hadoop、Spark学习路线(很值得推荐)(十八)
不多说,直接上干货! 说在前面的话 此笔,对于仅对于Hadoop和Spark初中学者.高手请忽略! 1 Java基础: 视频方面: 推荐<毕向东JAVA基础视频教程>.学 ...
- Hadoop概念学习系列之Hadoop、Spark学习路线(很值得推荐)
说在前面的话 此笔,对于仅对于Hadoop和Spark初中学者.高手请忽略! 1 Java基础: 视频方面: 推荐<毕向东JAVA基础视频教程>.学习hadoop不需要过 ...
- Hadoop与Spark之间的比较
Hadoop与Spark之间的比较 Hadoop框架的主要模块包括如下: Hadoop Common Hadoop分布式文件系统(HDFS) Hadoop YARN Hadoop MapReduce ...
- hadoop和spark比较
http://blog.51cto.com/13943588/2165946 3.hadoop和spark的都是并行计算,那么他们有什么相同和区别? 两者都是用mr模型来进行并行计算,hadoop的 ...
- 大数据的前世今生【Hadoop、Spark】
一.大数据简介 大数据是一个很热门的话题,但它是什么时候开始兴起的呢? 大数据[big data]这个词最早在UNIX用户协会的会议上被使用,来自SGI公司的科学家在其文章“大数据与下一代基础架构 ...
- [转帖]Hadoop与Spark比较
Hadoop与Spark比较 https://www.cnblogs.com/charlesblc/p/6206198.html 感觉自己落下好多东西没有学习 先看这篇文章:http://www.hu ...
- Hadoop概念学习系列之Hadoop、Spark学习路线
1 Java基础: 视频方面: 推荐<毕向东JAVA基础视频教程>.学习hadoop不需要过度的深入,java学习到javase,在Java虚拟机的内存管理.以及多线程. ...
随机推荐
- 【笔记】LR录制方式和常用函数
本文为本人复习LR时,笔记整理.以备后续查阅. 注意:录制脚本时,选择不同的协议下录制时设置选项也是不相同的,我们这里介绍的是基于协议web(http/html)录制选项设置. 对于web(http/ ...
- optim.py cs231n
n如果有错误,欢迎指出,不胜感激 import numpy as np """ This file implements various first-order upda ...
- VirtualBox安装,VirtualBox安装CentOS
1.进入VirtualBox官网下载页,找到对应的版本 https://www.virtualbox.org/wiki/Downloads 按步骤安装好 2.进入CentOS官网下载页,找到对应的版本 ...
- ChaosBlade 发布对 C++ 应用混沌实验的支持
前言 为满足 C++ 应用系统故障演练,阿里妈妈安全生产团队开源了 C++ 混沌实验执行器,填补了 C++ 应用混沌工程实验的空白,其遵循<混沌实验模型>,可通过 ChaosBlade 工 ...
- poj2125 最小点权覆盖集
题意:有一张图,对于每个点,有出边和入边,现在目的是删除改图的所有边,对于每个点,删除出边的花费Wi-,删除入边的花费Wi+,现在的目的求删去所有边后的花费最小. 建图方法:对于每个点i,拆点为i,i ...
- RDS 5.7三节点企业版时代的数据一致性解决方案
上篇我们看到了在MySQL主备模式下,我们在数据一致性上做了不少事情,但解决方案都有一定的局限性,适合部分场景或者解决不彻底的问题.随着以Google Spanner以及Amazon Aruora 为 ...
- Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第八章:光照
原文:Introduction to 3D Game Programming with DirectX 12 学习笔记之 --- 第八章:光照 代码工程地址: https://github.com/j ...
- Person Re-identification 系列论文笔记(四):Re-ID done right: towards good practices for person re-identification
Re-ID done right: towards good practices for person re-identification Almazan J, Gajic B, Murray N, ...
- Ubuntu修改root密码,ssh 允许root用户登录
1,切换为root用户 2,passwd root(or others) 3,输两次密码 4,重启. ssh允许root用户登录: 1,vim /etc/ssh/sshd_config 2,修改Per ...
- ADT上跑java application
Invalid layout of java.lang.String at value## A fatal error has been detected by the Java Runtime En ...