推荐十款java开源中文分词组件
1:Elasticsearch的开源中文分词器 IK Analysis(Star:2471)
IK中文分词器在Elasticsearch上的使用。原生IK中文分词是从文件系统中读取词典,es-ik本身可扩展成从不同的源读取词典。目前提供从sqlite3数据库中读取。es-ik-plugin-sqlite3使用方法: 1. 在elasticsearch.yml中设置你的sqlite3词典的位置: ik_analysis_db_path: /opt/ik/dictionary.db 我提供了默认的词典:https:/...
2:开源的java中文分词库 IKAnalyzer(Star:343)
IK Analyzer 是一个开源的,基于java语言开发的轻量级的中文分词工具包。从2006年12月推出1.0版开始, IKAnalyzer已经推出了4个大版本。最初,它是以开源项目Luence为应用主体的,结合词典分词和文法分析算法的中文分词组件。从3.0版本开始,IK发展为面向Java的公用分词组件,独立于Lucene项目,同时提供了对Lucene的默认...
3:java开源中文分词 Ansj(Star:3019)
Ansj中文分词 这是一个ictclas的java实现.基本上重写了所有的数据结构和算法.词典是用的开源版的ictclas所提供的.并且进行了部分的人工优化 内存中中文分词每秒钟大约100万字(速度上已经超越ictclas) 文件读取分词每秒钟大约30万字 准确率能达到96%以上 目前实现了.中文分词. 中文姓名识别 . 用户自定义词典 可以应用到自...
4:结巴分词 ElasticSearch 插件(Star:188)
elasticsearch官方只提供smartcn这个中文分词插件,效果不是很好,好在国内有medcl大神(国内最早研究es的人之一)写的两个中文分词插件,一个是ik的,一个是mmseg的
5:Java分布式中文分词组件 - word分词(Star:672)
word分词是一个Java实现的分布式的中文分词组件,提供了多种基于词典的分词算法,并利用ngram模型来消除歧义。能准确识别英文、数字,以及日期、时间等数量词,能识别人名、地名、组织机构名等未登录词
6:Java开源中文分词器jcseg(Star:400)
Jcseg是什么? Jcseg是基于mmseg算法的一个轻量级开源中文分词器,同时集成了关键字提取,关键短语提取,关键句子提取和文章自动摘要等功能,并且提供了最新版本的lucene, solr, elasticsearch的分词接口, Jcseg自带了一个 jcseg.properties文件...
庖丁中文分词库是一个使用Java开发的,可结合到Lucene应用中的,为互联网、企业内部网使用的中文搜索引擎分词组件。Paoding填补了国内中文分词方面开源组件的空白,致力于此并希翼成为互联网网站首选的中文分词开源组件。 Paoding中文分词追求分词的高效率和用户良好体验。 Paoding...
1、mmseg4j 用 Chih-Hao Tsai 的 MMSeg 算法(http://technology.chtsai.org/mmseg/ )实现的中文分词器,并实现 lucene 的 analyzer 和 solr 的TokenizerFactory 以方便在Lucene和Solr中使...
9:中文分词Ansj(Star:3015)
Ansj中文分词 这是一个ictclas的java实现.基本上重写了所有的数据结构和算法.词典是用的开源版的ictclas所提供的.并且进行了部分的人工优化 内存中中文分词每秒钟大约100万字(速度上已经超越ictclas) 文件读取分词每秒钟大约30万字 准确率能达到96%以上 目前实现了....
ictclas4j中文分词系统是sinboy在中科院张华平和刘群老师的研制的FreeICTCLAS的基础上完成的一个java开源分词项目,简化了原分词程序的复杂度,旨在为广大的中文分词爱好者一个更好的学习机会。
推荐十款java开源中文分词组件的更多相关文章
- 11大Java开源中文分词器的使用方法和分词效果对比,当前几个主要的Lucene中文分词器的比较
本文的目标有两个: 1.学会使用11大Java开源中文分词器 2.对比分析11大Java开源中文分词器的分词效果 本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那 ...
- 11大Java开源中文分词器的使用方法和分词效果对比
本文的目标有两个: 1.学会使用11大Java开源中文分词器 2.对比分析11大Java开源中文分词器的分词效果 本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那 ...
- Java开源中文分词类库
IKAnalyzer IKAnalyzer是一个开源的,基于java语言开发的轻量级的中文分词工具包.从2006年12月推出1.0版开始,IKAnalyzer已经推出了3个大版本.最初,它是以开 ...
- 开源中文分词工具探析(三):Ansj
Ansj是由孙健(ansjsun)开源的一个中文分词器,为ICTLAS的Java版本,也采用了Bigram + HMM分词模型(可参考我之前写的文章):在Bigram分词的基础上,识别未登录词,以提高 ...
- 开源中文分词工具探析(四):THULAC
THULAC是一款相当不错的中文分词工具,准确率高.分词速度蛮快的:并且在工程上做了很多优化,比如:用DAT存储训练特征(压缩训练模型),加入了标点符号的特征(提高分词准确率)等. 1. 前言 THU ...
- 全文检索引擎Solr系列——整合中文分词组件mmseg4j
默认Solr提供的分词组件对中文的支持是不友好的,比如:“VIM比作是编辑器之神”这个句子在索引的的时候,选择FieldType为”text_general”作为分词依据时,分词效果是: 它把每一个词 ...
- 全文检索引擎Solr系列——整合中文分词组件IKAnalyzer
IK Analyzer是一款结合了词典和文法分析算法的中文分词组件,基于字符串匹配,支持用户词典扩展定义,支持细粒度和智能切分,比如: 张三说的确实在理 智能分词的结果是: 张三 | 说的 | 确实 ...
- 阿里巴巴的26款Java开源项目
阿里巴巴的26款Java开源项目 开源展示了人类共同协作,成果分享的魅力.没有任何一家网络公司可以不使用开源技术,仅靠自身技术发展起来.“取之于开源,用之于开源,才能促进开源的良性发展”,阿里巴巴各个 ...
- 开源中文分词工具探析(五):FNLP
FNLP是由Fudan NLP实验室的邱锡鹏老师开源的一套Java写就的中文NLP工具包,提供诸如分词.词性标注.文本分类.依存句法分析等功能. [开源中文分词工具探析]系列: 中文分词工具探析(一) ...
随机推荐
- VC++ 删除一个文件目录下的所有文件以及目录
BOOL DoRemoveDirectory(CString chrDirName); BOOL ReleaseDirectory(CString chrDirName) { BOOL bRemove ...
- 0xc0000005:读取位置时发生访问冲突
这是空指针,比如: A* a=NULL; a->fun();//会提示标题错误,因为a没有分配空间
- linux下使用docker-thunder-xware进行离线下载
1.环境: lsb_release -a hello@jhello:~$ lsb_release -aNo LSB modules are available.Distributor ID: Ubun ...
- 关于ActiveMQ、RocketMQ、RabbitMQ、Kafka一些总结和区别
这是一篇分享文 转自:http://www.cnblogs.com/williamjie/p/9481780.html 尊重原作,谢谢 消息队列 为什么写这篇文章? 博主有两位朋友分别是小A和小B: ...
- 【第十四章】 springboot + profile(不同环境读取不同配置)
具体做法: 不同环境的配置设置一个配置文件,例如:dev环境下的配置配置在application-dev.properties中:prod环境下的配置配置在application-prod.prope ...
- redis持久化RDB和AOF-转载
Redis 持久化: 提供了多种不同级别的持久化方式:一种是RDB,另一种是AOF. RDB 持久化可以在指定的时间间隔内生成数据集的时间点快照(point-in-time snapshot). AO ...
- Windows下搭建FTP服务器
一.什么是ftp? FTP 是File Transfer Protocol(文件传输协议)的英文简称,而中文简称为“文传协议”.用于Internet上的控制文件的双向传输.同时,它也是一个应用程序(A ...
- Linux——bash应用技巧简单学习笔记
本人是看的lamp兄弟连的视频,学习的知识做一下简单,如有错误尽情拍砖. 命令补齐 命令补齐允许用户输入文件名起始的若干个字 母后,按<Tab>键补齐文件名. 命令历史 命令历史允许用户浏 ...
- 51nod 1232 完美数 数位dp
1232 完美数 题目来源: 胡仁东 基准时间限制:2 秒 空间限制:131072 KB 如果一个数能够被组成它的各个非0数字整除,则称它是完美数.例如:1-9都是完美数,10,11,12,101都 ...
- python 千位分隔符,
>>>) >>>'1,234,567,890'