Python yield 使用
老是看到好的文章,不由自主的收集过来。
原文链接:https://www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/
廖大写的, 对理解 yield 很有帮助!
您可能听说过,带有 yield 的函数在 Python 中被称之为 generator(生成器),何谓 generator ?
我们先抛开 generator,以一个常见的编程题目来展示 yield 的概念。
如何生成斐波那契數列
斐波那契(Fibonacci)數列是一个非常简单的递归数列,除第一个和第二个数外,任意一个数都可由前两个数相加得到。用计算机程序输出斐波那契數列的前 N 个数是一个非常简单的问题,许多初学者都可以轻易写出如下函数:
清单 1. 简单输出斐波那契數列前 N 个数
1
2
3
4
5
6
|
def fab(max): n, a, b = 0, 0, 1 while n < max: print b a, b = b, a + b n = n + 1 |
执行 fab(5),我们可以得到如下输出:
1
2
3
4
5
6
|
>>> fab(5) 1 1 2 3 5 |
结果没有问题,但有经验的开发者会指出,直接在 fab 函数中用 print 打印数字会导致该函数可复用性较差,因为 fab 函数返回 None,其他函数无法获得该函数生成的数列。
要提高 fab 函数的可复用性,最好不要直接打印出数列,而是返回一个 List。以下是 fab 函数改写后的第二个版本:
清单 2. 输出斐波那契數列前 N 个数第二版
1
2
3
4
5
6
7
8
|
def fab(max): n, a, b = 0, 0, 1 L = [] while n < max: L.append(b) a, b = b, a + b n = n + 1 return L |
可以使用如下方式打印出 fab 函数返回的 List:
1
2
3
4
5
6
7
8
|
>>> for n in fab(5): ... print n ... 1 1 2 3 5 |
改写后的 fab 函数通过返回 List 能满足复用性的要求,但是更有经验的开发者会指出,该函数在运行中占用的内存会随着参数 max 的增大而增大,如果要控制内存占用,最好不要用 List
来保存中间结果,而是通过 iterable 对象来迭代。例如,在 Python2.x 中,代码:
清单 3. 通过 iterable 对象来迭代
1
|
for i in range(1000): pass |
会导致生成一个 1000 个元素的 List,而代码:
1
|
for i in xrange(1000): pass |
则不会生成一个 1000 个元素的 List,而是在每次迭代中返回下一个数值,内存空间占用很小。因为 xrange 不返回 List,而是返回一个 iterable 对象。
利用 iterable 我们可以把 fab 函数改写为一个支持 iterable 的 class,以下是第三个版本的 Fab:
清单 4. 第三个版本
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
|
class Fab(object): def __init__(self, max): self.max = max self.n, self.a, self.b = 0, 0, 1 def __iter__(self): return self def next(self): if self.n < self.max: r = self.b self.a, self.b = self.b, self.a + self.b self.n = self.n + 1 return r raise StopIteration() |
Fab 类通过 next() 不断返回数列的下一个数,内存占用始终为常数:
1
2
3
4
5
6
7
8
|
>>> for n in Fab(5): ... print n ... 1 1 2 3 5 |
然而,使用 class 改写的这个版本,代码远远没有第一版的 fab 函数来得简洁。如果我们想要保持第一版 fab 函数的简洁性,同时又要获得 iterable 的效果,yield 就派上用场了:
清单 5. 使用 yield 的第四版
1
2
3
4
5
6
7
8
9
|
def fab(max): n, a, b = 0, 0, 1 while n < max: yield b # print b a, b = b, a + b n = n + 1 ''' |
第四个版本的 fab 和第一版相比,仅仅把 print b 改为了 yield b,就在保持简洁性的同时获得了 iterable 的效果。
调用第四版的 fab 和第二版的 fab 完全一致:
1
2
3
4
5
6
7
8
|
>>> for n in fab(5): ... print n ... 1 1 2 3 5 |
简单地讲,yield 的作用就是把一个函数变成一个 generator,带有 yield 的函数不再是一个普通函数,Python 解释器会将其视为一个 generator,调用 fab(5) 不会执行 fab 函数,而是返回一个 iterable 对象!在 for 循环执行时,每次循环都会执行 fab 函数内部的代码,执行到 yield b 时,fab 函数就返回一个迭代值,下次迭代时,代码从 yield b 的下一条语句继续执行,而函数的本地变量看起来和上次中断执行前是完全一样的,于是函数继续执行,直到再次遇到 yield。
也可以手动调用 fab(5) 的 next() 方法(因为 fab(5) 是一个 generator 对象,该对象具有 next() 方法),这样我们就可以更清楚地看到 fab 的执行流程:
清单 6. 执行流程
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
|
>>> f = fab(5) >>> f.next() 1 >>> f.next() 1 >>> f.next() 2 >>> f.next() 3 >>> f.next() 5 >>> f.next() Traceback (most recent call last): File "< stdin >", line 1, in < module > StopIteration |
当函数执行结束时,generator 自动抛出 StopIteration 异常,表示迭代完成。在 for 循环里,无需处理 StopIteration 异常,循环会正常结束。
我们可以得出以下结论:
一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。
yield 的好处是显而易见的,把一个函数改写为一个 generator 就获得了迭代能力,比起用类的实例保存状态来计算下一个 next() 的值,不仅代码简洁,而且执行流程异常清晰。
如何判断一个函数是否是一个特殊的 generator 函数?可以利用 isgeneratorfunction 判断:
清单 7. 使用 isgeneratorfunction 判断
1
2
3
|
>>> from inspect import isgeneratorfunction >>> isgeneratorfunction(fab) True |
要注意区分 fab 和 fab(5),fab 是一个 generator function,而 fab(5) 是调用 fab 返回的一个 generator,好比类的定义和类的实例的区别:
清单 8. 类的定义和类的实例
1
2
3
4
5
|
>>> import types >>> isinstance(fab, types.GeneratorType) False >>> isinstance(fab(5), types.GeneratorType) True |
fab 是无法迭代的,而 fab(5) 是可迭代的:
1
2
3
4
5
|
>>> from collections import Iterable >>> isinstance(fab, Iterable) False >>> isinstance(fab(5), Iterable) True |
每次调用 fab 函数都会生成一个新的 generator 实例,各实例互不影响:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
|
>>> f1 = fab(3) >>> f2 = fab(5) >>> print 'f1:', f1.next() f1: 1 >>> print 'f2:', f2.next() f2: 1 >>> print 'f1:', f1.next() f1: 1 >>> print 'f2:', f2.next() f2: 1 >>> print 'f1:', f1.next() f1: 2 >>> print 'f2:', f2.next() f2: 2 >>> print 'f2:', f2.next() f2: 3 >>> print 'f2:', f2.next() f2: 5 |
return 的作用
在一个 generator function 中,如果没有 return,则默认执行至函数完毕,如果在执行过程中 return,则直接抛出 StopIteration 终止迭代。
另一个例子
另一个 yield 的例子来源于文件读取。如果直接对文件对象调用 read() 方法,会导致不可预测的内存占用。好的方法是利用固定长度的缓冲区来不断读取文件内容。通过 yield,我们不再需要编写读文件的迭代类,就可以轻松实现文件读取:
清单 9. 另一个 yield 的例子
1
2
3
4
5
6
7
8
9
|
def read_file(fpath): BLOCK_SIZE = 1024 with open(fpath, 'rb') as f: while True: block = f.read(BLOCK_SIZE) if block: yield block else: return |
以上仅仅简单介绍了 yield 的基本概念和用法,yield 在 Python 3 中还有更强大的用法,我们会在后续文章中讨论。
注:本文的代码均在 Python 2.7 中调试通过
Python yield 使用的更多相关文章
- Python yield与实现
Python yield与实现 yield的功能类似于return,但是不同之处在于它返回的是生成器. 生成器 生成器是通过一个或多个yield表达式构成的函数,每一个生成器都是一个迭代器(但是迭 ...
- 【转】Python yield 使用浅析
转载地址: www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/ Python yield 使用浅析 初学 Python 的开发者经 ...
- Python yield 使用浅析(转)
Python yield 使用浅析 初学 Python 的开发者经常会发现很多 Python 函数中用到了 yield 关键字,然而,带有 yield 的函数执行流程却和普通函数不一样,yield 到 ...
- python yield from 语法
python yield from 语法 yield语法比较简单, 教程也很多 , yield from的中文讲解很少 , python官网是这样解释的 PEP 380 adds the yield ...
- python yield用法 (tornado, coroutine)
yield关键字用来定义生成器(Generator),其具体功能是可以当return使用,从函数里返回一个值,不同之处是用yield返回之后,可以让函数从上回yield返回的地点继续执行.也就是说,y ...
- python yield 与 yield from转
python yield 与 yield from转 https://blog.csdn.net/chenbin520/article/details/78111399?locationNum=7&a ...
- 转:Python yield 使用浅析 from IBM Developer
评注:没有看懂. 转: https://www.ibm.com/developerworks/cn/opensource/os-cn-python-yield/ Python yield 使用浅析 初 ...
- python yield关键词使用总结
python yield关键词使用总结 by:授客 QQ:1033553122 测试环境 win10 python 3.5 yield功能简介 简单来说,yield 的作用就是把一个函数变成一个 ge ...
- Python yield 使用浅析【转】
Python yield 使用浅析 IBM developerWorks 中国 : Open source IBM 开源 - IBM Developer 中国 (原 developerWorks 中国 ...
- python yield && scrapy yield
title: python yield && scrapy yield date: 2020-03-17 16:00:00 categories: python tags: 语法 yi ...
随机推荐
- Java Run-Time Data Areas
前言 本文主要介绍JVM的运行时数据区 来自Oracle文档 Java Virtual Machine Specification -- Chapter 2. The Structure of the ...
- Newtonsoft.Json高级用法,json序列号,model反序列化,支持序列化和反序列化DataTable,DataSet,Entity Framework和Entity,字符串
原文地址:https://www.cnblogs.com/yanweidie/p/4605212.html 手机端应用讲究速度快,体验好.刚好手头上的一个项目服务端接口有性能问题,需要进行优化.在接口 ...
- Qt实现自定义按钮的三态效果
好久之前做的一个小软件,好长时间没动过了,在不记录下有些细节可能都忘了,这里整理下部分功能的实现. 按钮的三态,指的是普通态.鼠标的停留态.点击态,三态是界面交互非常基本的一项功能,Qt中如果使用的是 ...
- Grid++Report
ylbtech-Miscellaneos:Grid++Report 1. 关于Grid++Report返回顶部 Grid++Report 可用于开发桌面C/S报表与WEB报表(B/S报表),C/S报表 ...
- Oracle比较2个表内容
Comparing the Contents of Two Tables A表和B表.拥有一致列,C2一列内容不同. I have two tables named A and B. They hav ...
- maven项目里,junit的test程序不能访问src/test/resource下面的配置
问题描述 最近在写单元测试,但是不想改动源代码,所以想自己在本test目录下建一个resouces文件夹并添加对应的配置文件,可是发现test程序无法读取这个resouces文件夹下的配置. 问题解决 ...
- 怎样修改SQL Server 2005/2008的系统存储过程(转)
我们知道,SQL Server 2005/2008的系统存储过程在正常情况下是无法直接修改的. 尽管本文是介绍怎样修改它的,但在这里,我还是建议大家尽量不要去修改它.(好像有点绕哈...) OK,闲话 ...
- Android -- Canvas java.lang.UnsupportedOperationException
干货 java.lang.UnsupportedOperationException at android.view.GLES20Canvas.clipPath(GLES20Canvas.java:2 ...
- 【Spark】Sparkstreaming-共享变量-缓存RDD-到底是什么情况?
Sparkstreaming-共享变量-缓存RDD-到底是什么情况? sparkstreaming 多个 rdd_百度搜索 Spark Streaming中空RDD处理及流处理程序优雅的停止 - xu ...
- Kafka:ZK+Kafka+Spark Streaming集群环境搭建(十一)定制一个arvo格式文件发送到kafka的topic,通过Structured Streaming读取kafka的数据
将arvo格式数据发送到kafka的topic 第一步:定制avro schema: { "type": "record", "name": ...