1.题意描述

本题大致意思是讲:给定一个广场,把它分为M行N列的正方形小框。现在给定有K个拉拉队员,每一个拉拉队员需要站在小框内进行表演。但是表演过程中有如下要求:

(1)每一个小框只能站立一个拉拉队员;

(2)广场的第一行,最后一行,第一列,最后一列都至少站有一个拉拉队员;

(3)站在广场的四个角落的拉拉队员可以认为是同时占据了一行和一列。

2.思路分析:

本题如果直接枚举的话难度很大并且会无从下手。那么我们是否可以采取逆向思考的方法来解决问题呢?我们可以用总的情况把不符合要求的减掉就行了。

首先我们如果不考虑任何约束条件,我们可以得出如下结论:

下载我们假定第一行不站拉拉队员的所有的站立方法有A种。最后一行不站拉拉队员的所有的方法有B种。第一列不站拉拉队员的所有的站立方法有C种。最后一列不站拉拉队员的站立方法有D种。

下面我们可以得出最后结果:

下面问题来了我们如何利用代码实现容斥原理呢?我们可以借用离散数学的最大项和最小项知识结合与运算来判断每一项的特征。比如说,含A的和1进行与运算。含B的与2进行与运算。含C的和4进行与运算。含D的和8进行与运算。

然后对于每一种状态,我们利用数字0-15来代替。

在进行这些工作之前,我们还要进行基础性工作,数据初始化和 组合数公式 打表。

A代表包括第一行

B代表包括最后一行

C代表包括第一列

D代表包括最后一列

#include <bits/stdc++.h>
using namespace std;
int n,m,k;
const int mod = ;
int c[][]; void init ()
{
c[][] = ;
for(int i=; i <= ;i++)
{
c[i][] = c[i][i] = ;
for(int j=;j < i;j++)
{
c[i][j] = (c[i-][j-] + c[i-][j])%mod;
}
}
} int main(){
init();
int t;
scanf("%d",&t);
for(int cas = ; cas <= t ;cas++)
{
scanf("%d %d %d",&n,&m,&k);
int sum = ;
for(int i=;i < ;i++)
{
int n1= n,m1= m;
int b = ;
if(i & )
b++,n1--;
if(i & )
b++,n1--;
if(i & )
b++,m1--;
if(i & )
b++,m1--;
if( b & )
sum = (sum +mod - c[n1*m1][k])%mod;
else
sum = (sum + c[n1*m1][k])%mod;
}
printf("Case %d: %d\n",cas,sum);
} return ;
}

UVA 11806 Cheerleaders (容斥原理的更多相关文章

  1. UVA 11806 Cheerleaders (容斥原理)

    题意 一个n*m的区域内,放k个啦啦队员,第一行,最后一行,第一列,最后一列一定要放,一共有多少种方法. 思路 设A1表示第一行放,A2表示最后一行放,A3表示第一列放,A4表示最后一列放,则要求|A ...

  2. UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举)

    UVA.11806 Cheerleaders (组合数学 容斥原理 二进制枚举) 题意分析 给出n*m的矩形格子,给出k个点,每个格子里面可以放一个点.现在要求格子的最外围一圈的每行每列,至少要放一个 ...

  3. uva 11806 Cheerleaders

    // uva 11806 Cheerleaders // // 题目大意: // // 给你n * m的矩形格子,要求放k个相同的石子,使得矩形的第一行 // 第一列,最后一行,最后一列都必须有石子. ...

  4. UVa 11806 Cheerleaders (容斥原理+二进制表示状态)

    In most professional sporting events, cheerleaders play a major role in entertaining the spectators. ...

  5. UVA 11806 Cheerleaders (组合+容斥原理)

    自己写的代码: #include <iostream> #include <stdio.h> #include <string.h> /* 题意:相当于在一个m*n ...

  6. UVa 11806 Cheerleaders (数论容斥原理)

    题意:给定一个n*m的棋盘,要放k个石子,要求第一行,最后一行,第一列,最后一列都有石子,问有多少种放法. 析:容斥原理,集合A是第一行没有石子,集合B是最后一行没有石子,集合C是第一列没有石子,集合 ...

  7. UVA - 11806 Cheerleaders (容斥原理)

    题意:在N*M个方格中放K个点,要求第一行,第一列,最后一行,最后一列必须放,问有多少种方法. 分析: 1.集合A,B,C,D分别代表第一行,第一列,最后一行,最后一列放. 则这四行必须放=随便放C[ ...

  8. 【递推】【组合数】【容斥原理】UVA - 11806 - Cheerleaders

    http://www.cnblogs.com/khbcsu/p/4245943.html 本题如果直接枚举的话难度很大并且会无从下手.那么我们是否可以采取逆向思考的方法来解决问题呢?我们可以用总的情况 ...

  9. UVa 11806 - Cheerleaders (组合计数+容斥原理)

    <训练指南>p.108 #include <cstdio> #include <cstring> #include <cstdlib> using na ...

随机推荐

  1. nginx 哈希表数据结构

    1.哈希表ngx_hash_t的优势和特点 哈希表是一种典型的以空间换取时间的数据结构,在没有冲突的情况下,对任意元素的插入.索引.删除的时间复杂度都是O(1).这样优秀的时间复杂度是通过将元素的ke ...

  2. struts2 错误:Dispatcher initialization failed java.lang.RuntimeException

    严重: Dispatcher initialization failed java.lang.RuntimeException: java.lang.reflect.InvocationTargetE ...

  3. 【剑指offer】包含min函数的栈

    一.题目: 定义栈的数据结构,请在该类型中实现一个能够得到栈中所含最小元素的min函数. 二.思路: 无,Z(zhi)Z(zhang)式操作. 三.代码:    

  4. 安装HDF5及在VS下配置HDF5

    最近要用到HDF5来存储数据,想要安装尝试用一下.发现网上有两种安装方式,一种是obtain518.html:获取最新的HDF5-1.8软件;另一种是cmakebuild518.html:使用CMAK ...

  5. Summary: Difference between null and empty String

    String s1 = ""; means that the empty String is assigned to s1. In this case, s1.length() i ...

  6. 7.MySQL必知必会之用通配符进行过滤-like

    用通配符进行过滤-like 1. like操作符 先说两个概念:

  7. Object-C-NSFileManager

    +(NSFileManager *)defaultManager;//获得文件管理对象 -(BOOL)createFileAtPath:(NSString *)path contents:(NSDat ...

  8. python利用WMI监控windows状态如CPU、内存、硬盘

    安装pywin32库 下载地址: https://sourceforge.net/projects/pywin32/files%2Fpywin32/选择对应python版本的文件.下载后在window ...

  9. linux常用命令:route 命令

    Linux系统的route 命令用于显示和操作IP路由表(show / manipulate the IP routing table).要实现两个不同的子网之间的通信,需 要一台连接两个网络的路由器 ...

  10. js 技巧(智能社教程温故)

    1.js 中  NaN === NaN  值为false; 2.parseInt("abc") === NaN;(不是数字) 3.tab 纯js 实现.可以给当前循环的元素添加.i ...