计蒜客 30990 - An Olympian Math Problem - [简单数学题][2018ICPC南京网络预赛A题]
题目链接:https://nanti.jisuanke.com/t/30990
Alice, a student of grade 6, is thinking about an Olympian Math problem, but she feels so despair that she cries. And her classmate, Bob, has no idea about the problem. Thus he wants you to help him. The problem is:
We denote k!:
k! = 1 * 2 * 3 * … * (k - 1) * k
We denote S:
S = 1 * 1! + 2 * 2! + … + (n - 1) * (n - 1)!
Then S module n is ____________
You are given an integer n.
You have to calculate S modulo n.
Input
The first line contains an integer T(T≤1000), denoting the number of test cases.
For each test case, there is a line which has an integer n.
It is guaranteed that 2≤n≤10^18.
Output
For each test case, print an integer S modulo n.
题意:
假设 $S\left( n \right) = 1 \times 1! + 2 \times 2! + \cdots + \left( {n - 1} \right) \times \left( {n - 1} \right)!$,求 $S\left( n \right)$ 模 $n$ 的余数。
题解:
$\begin{array}{l} 1 + S\left( n \right) \\ = 1 + 1 \times 1! + 2 \times 2! + \cdots + \left( {n - 1} \right) \times \left( {n - 1} \right)! = 2 \times 1! + 2 \times 2! + \cdots + \left( {n - 1} \right) \times \left( {n - 1} \right)! \\ = 2! + 2 \times 2! + \cdots + \left( {n - 1} \right) \times \left( {n - 1} \right)! = 3 \times 2! + \cdots + \left( {n - 1} \right) \times \left( {n - 1} \right)! \\ = 3! + 3 \times 3! + \cdots + \left( {n - 1} \right) \times \left( {n - 1} \right)! = 4 \times 3! + \cdots + \left( {n - 1} \right) \times \left( {n - 1} \right)! \\ = \cdots = \left( {n - 1} \right)! + \left( {n - 1} \right) \times \left( {n - 1} \right)! = n \times \left( {n - 1} \right)! = n! \\ \end{array}$
所以有 $S\left( n \right)\bmod n = \left( {n! - 1} \right)\bmod n = \left( {n! + n - 1} \right)\bmod n = n!\bmod n + \left( {n - 1} \right)\bmod n = n - 1$。
AC代码:
#include<bits/stdc++.h>
using namespace std;
int main()
{
int t;
cin>>t;
long long n;
while(t--)
{
cin>>n;
cout<<n-<<endl;
}
}
计蒜客 30990 - An Olympian Math Problem - [简单数学题][2018ICPC南京网络预赛A题]的更多相关文章
- 计蒜客 30996 - Lpl and Energy-saving Lamps - [线段树][2018ICPC南京网络预赛G题]
题目链接:https://nanti.jisuanke.com/t/30996 During tea-drinking, princess, amongst other things, asked w ...
- 计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)
A. An Olympian Math Problem 54.28% 1000ms 65536K Alice, a student of grade 66, is thinking about a ...
- 计蒜客 31452 - Supreme Number - [简单数学][2018ICPC沈阳网络预赛K题]
题目链接:https://nanti.jisuanke.com/t/31452 A prime number (or a prime) is a natural number greater than ...
- 计蒜客 31001 - Magical Girl Haze - [最短路][2018ICPC南京网络预赛L题]
题目链接:https://nanti.jisuanke.com/t/31001 题意: 一带权有向图,有 n 个节点编号1~n,m条有向边,现在一人从节点 1 出发,他有最多 k 次机会施展魔法使得某 ...
- 计蒜客 30999 - Sum - [找规律+线性筛][2018ICPC南京网络预赛J题]
题目链接:https://nanti.jisuanke.com/t/30999 样例输入258 样例输出814 题意: squarefree数是指不含有完全平方数( 1 除外)因子的数, 现在一个数字 ...
- 计蒜客 30994 - AC Challenge - [状压DP][2018ICPC南京网络预赛E题]
题目链接:https://nanti.jisuanke.com/t/30994 样例输入: 5 5 6 0 4 5 1 1 3 4 1 2 2 3 1 3 1 2 1 4 样例输出: 55 样例输入: ...
- 计蒜客 31453 - Hard to prepare - [递归][2018ICPC徐州网络预赛A题]
题目链接:https://nanti.jisuanke.com/t/31453 After Incident, a feast is usually held in Hakurei Shrine. T ...
- 计蒜客 31447 - Fantastic Graph - [有源汇上下界可行流][2018ICPC沈阳网络预赛F题]
题目链接:https://nanti.jisuanke.com/t/31447 "Oh, There is a bipartite graph.""Make it Fan ...
- 计蒜客 31460 - Ryuji doesn't want to study - [线段树][2018ICPC徐州网络预赛H题]
题目链接:https://nanti.jisuanke.com/t/31460 Ryuji is not a good student, and he doesn't want to study. B ...
随机推荐
- AWS系列-创建 IAM 用户
创建 IAM 用户(控制台) 官方文档 https://docs.aws.amazon.com/zh_cn/IAM/latest/UserGuide/introduction.html 通过 AWS ...
- Maven发布war包到Tomcat
一.修改Tomcat下配置文件tomcat-users.xml,然后启动 <role rolename="manager-gui"/> <role rolenam ...
- mysql和连接相关的timeout
MySQL和连接相关的timeout 今天同事问为什么查询mysql库时, 在数据量比较大时,会话总断.刚开始以为是mysql的和连接有关timeout的问题,结果是网络的不稳定的原因. 下面总结下和 ...
- Lua协程-测试3
print("Lua 协程测试3") -- 实现消费者-生产者关系(生产一个就消费一个) count = -- 生产总数 -- 生产者 local newProductorCo = ...
- 【代码审计】711cms_V1.0.5 目录遍历漏洞分析
0x00 环境准备 711CMS官网: https://www.711cms.com/ 网站源码版本:711CMS 1.0.5 正式版(发布时间:2018-01-20) 程序源码下载:https: ...
- 【RF库XML测试】Add Element
Name:Add ElementSource:XML <test library>Arguments:[ source | element | index=None | xpath=. ] ...
- IIS URL Rewrite Module的防盗链规则设置
IIS版本:IIS 7.5 URL Rewrite组件:IIS URL Rewrite Module(http://www.iis.net/downloads/microsoft/url-rewrit ...
- 判断App整体处于前台还是后台
1.通过RunningTaskInfo类判断(需要额外权限): 复制代码代码如下: /** *判断当前应用程序处于前台还是后台 */ public static boolean isApplicati ...
- flask获取传入参数的两种方式
#coding=utf-8 from flask import Flask from flask import request app = Flask(__name__) @app.route(&qu ...
- GLIBC_2.14报错
[linux]提示"libc.so.6: version `GLIBC_2.14' not found",系统的glibc版本太低 0.以下在系统CentOS 6.3 x86_64 ...