题目链接:https://nanti.jisuanke.com/t/30990

Alice, a student of grade 6, is thinking about an Olympian Math problem, but she feels so despair that she cries. And her classmate, Bob, has no idea about the problem. Thus he wants you to help him. The problem is:

We denote k!:

k! = 1 * 2 * 3 * … * (k - 1) * k

We denote S:

S = 1 * 1! + 2 * 2! + … + (n - 1) * (n - 1)!

Then S module n is ____________

You are given an integer n.

You have to calculate S modulo n.

Input
The first line contains an integer T(T≤1000), denoting the number of test cases.

For each test case, there is a line which has an integer n.

It is guaranteed that 2≤n≤10^18.

Output
For each test case, print an integer S modulo n.

题意:

假设 $S\left( n \right) = 1 \times 1! + 2 \times 2! + \cdots + \left( {n - 1} \right) \times \left( {n - 1} \right)!$,求 $S\left( n \right)$ 模 $n$ 的余数。

题解:

$\begin{array}{l} 1 + S\left( n \right) \\ = 1 + 1 \times 1! + 2 \times 2! + \cdots + \left( {n - 1} \right) \times \left( {n - 1} \right)! = 2 \times 1! + 2 \times 2! + \cdots + \left( {n - 1} \right) \times \left( {n - 1} \right)! \\ = 2! + 2 \times 2! + \cdots + \left( {n - 1} \right) \times \left( {n - 1} \right)! = 3 \times 2! + \cdots + \left( {n - 1} \right) \times \left( {n - 1} \right)! \\ = 3! + 3 \times 3! + \cdots + \left( {n - 1} \right) \times \left( {n - 1} \right)! = 4 \times 3! + \cdots + \left( {n - 1} \right) \times \left( {n - 1} \right)! \\ = \cdots = \left( {n - 1} \right)! + \left( {n - 1} \right) \times \left( {n - 1} \right)! = n \times \left( {n - 1} \right)! = n! \\ \end{array}$

所以有 $S\left( n \right)\bmod n = \left( {n! - 1} \right)\bmod n = \left( {n! + n - 1} \right)\bmod n = n!\bmod n + \left( {n - 1} \right)\bmod n = n - 1$。

AC代码:

#include<bits/stdc++.h>
using namespace std;
int main()
{
int t;
cin>>t;
long long n;
while(t--)
{
cin>>n;
cout<<n-<<endl;
}
}

计蒜客 30990 - An Olympian Math Problem - [简单数学题][2018ICPC南京网络预赛A题]的更多相关文章

  1. 计蒜客 30996 - Lpl and Energy-saving Lamps - [线段树][2018ICPC南京网络预赛G题]

    题目链接:https://nanti.jisuanke.com/t/30996 During tea-drinking, princess, amongst other things, asked w ...

  2. 计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)

    A. An Olympian Math Problem 54.28% 1000ms 65536K   Alice, a student of grade 66, is thinking about a ...

  3. 计蒜客 31452 - Supreme Number - [简单数学][2018ICPC沈阳网络预赛K题]

    题目链接:https://nanti.jisuanke.com/t/31452 A prime number (or a prime) is a natural number greater than ...

  4. 计蒜客 31001 - Magical Girl Haze - [最短路][2018ICPC南京网络预赛L题]

    题目链接:https://nanti.jisuanke.com/t/31001 题意: 一带权有向图,有 n 个节点编号1~n,m条有向边,现在一人从节点 1 出发,他有最多 k 次机会施展魔法使得某 ...

  5. 计蒜客 30999 - Sum - [找规律+线性筛][2018ICPC南京网络预赛J题]

    题目链接:https://nanti.jisuanke.com/t/30999 样例输入258 样例输出814 题意: squarefree数是指不含有完全平方数( 1 除外)因子的数, 现在一个数字 ...

  6. 计蒜客 30994 - AC Challenge - [状压DP][2018ICPC南京网络预赛E题]

    题目链接:https://nanti.jisuanke.com/t/30994 样例输入: 5 5 6 0 4 5 1 1 3 4 1 2 2 3 1 3 1 2 1 4 样例输出: 55 样例输入: ...

  7. 计蒜客 31453 - Hard to prepare - [递归][2018ICPC徐州网络预赛A题]

    题目链接:https://nanti.jisuanke.com/t/31453 After Incident, a feast is usually held in Hakurei Shrine. T ...

  8. 计蒜客 31447 - Fantastic Graph - [有源汇上下界可行流][2018ICPC沈阳网络预赛F题]

    题目链接:https://nanti.jisuanke.com/t/31447 "Oh, There is a bipartite graph.""Make it Fan ...

  9. 计蒜客 31460 - Ryuji doesn't want to study - [线段树][2018ICPC徐州网络预赛H题]

    题目链接:https://nanti.jisuanke.com/t/31460 Ryuji is not a good student, and he doesn't want to study. B ...

随机推荐

  1. js 或 且 非

    给定 x=6 以及 y=3,下表解释了逻辑运算符: 运算符 描述 例子 && and (x < 10 && y > 1) 为 true || or (x== ...

  2. Apache双机热备

    部署方案 1.1 方案设计 1.2 方案描述 如上图所示,我们要有三个可用的IP地址(切记不能与网络中其他机器IP重复),针对我使用的三个IP地址做如下说明: 10.16.252.10 //这个IP地 ...

  3. libevent 入门教程:Echo Server based on libevent(转)

    下面假定已经学习过基本的socket编程(socket, bind, listen, accept, connect, recv, send, close),并且对异步/callback有基本的认识. ...

  4. MyBatis入门程序之表关联

    一.一对一查询(ResultType比较简单,只需要指向扩展的类:ResultMap逐个匹配比较麻烦,可以配置属性autoMapping="true",还可以可以实现延迟加载) 1 ...

  5. 【Python】Excel处理

    1.包导入 from openpyxl import Workbook from openpyxl import load_workbook from openpyxl.compat import r ...

  6. PostgreSQL逻辑复制之slony篇

    Slony是PostgreSQL领域中最广泛的复制解决方案之一.它不仅是最古老的复制实现之一,它也是一个拥有最广泛的外部工具支持的工具,比如pgAdmin3.多年来,Slony是在PostgreSQL ...

  7. 利用DB实现简单去重处理

    业务需要针对某文件进行判重操作,用Perl实现如下 #!/usr/bin/perl my %h; s/\s+$// and $h{$_}++ while <>; print "$ ...

  8. Python中执行外部命令

    有很多需求需要在Python中执行shell命令.启动子进程,并捕获命令的输出和退出状态码,类似于Java中的Runtime类库. subprocess模块的使用: Python使用最广泛的是标准库的 ...

  9. 把Model改成Lib

    1.把库的Activity删掉 2.把库的Application节点内容删掉 3.apply plugin:' 包名.library' 4.把ApplicationId去掉, 导入即可使用

  10. javaweb使用cookie存取中文以及读取中文

    要想在cookie中存储中文,那么必须使用URLEncoder类里面的encode(String s, String enc)方法进行中文转码,例如: 1 Cookie cookie = new Co ...