题目链接:https://nanti.jisuanke.com/t/30990

Alice, a student of grade 6, is thinking about an Olympian Math problem, but she feels so despair that she cries. And her classmate, Bob, has no idea about the problem. Thus he wants you to help him. The problem is:

We denote k!:

k! = 1 * 2 * 3 * … * (k - 1) * k

We denote S:

S = 1 * 1! + 2 * 2! + … + (n - 1) * (n - 1)!

Then S module n is ____________

You are given an integer n.

You have to calculate S modulo n.

Input
The first line contains an integer T(T≤1000), denoting the number of test cases.

For each test case, there is a line which has an integer n.

It is guaranteed that 2≤n≤10^18.

Output
For each test case, print an integer S modulo n.

题意:

假设 $S\left( n \right) = 1 \times 1! + 2 \times 2! + \cdots + \left( {n - 1} \right) \times \left( {n - 1} \right)!$,求 $S\left( n \right)$ 模 $n$ 的余数。

题解:

$\begin{array}{l} 1 + S\left( n \right) \\ = 1 + 1 \times 1! + 2 \times 2! + \cdots + \left( {n - 1} \right) \times \left( {n - 1} \right)! = 2 \times 1! + 2 \times 2! + \cdots + \left( {n - 1} \right) \times \left( {n - 1} \right)! \\ = 2! + 2 \times 2! + \cdots + \left( {n - 1} \right) \times \left( {n - 1} \right)! = 3 \times 2! + \cdots + \left( {n - 1} \right) \times \left( {n - 1} \right)! \\ = 3! + 3 \times 3! + \cdots + \left( {n - 1} \right) \times \left( {n - 1} \right)! = 4 \times 3! + \cdots + \left( {n - 1} \right) \times \left( {n - 1} \right)! \\ = \cdots = \left( {n - 1} \right)! + \left( {n - 1} \right) \times \left( {n - 1} \right)! = n \times \left( {n - 1} \right)! = n! \\ \end{array}$

所以有 $S\left( n \right)\bmod n = \left( {n! - 1} \right)\bmod n = \left( {n! + n - 1} \right)\bmod n = n!\bmod n + \left( {n - 1} \right)\bmod n = n - 1$。

AC代码:

#include<bits/stdc++.h>
using namespace std;
int main()
{
int t;
cin>>t;
long long n;
while(t--)
{
cin>>n;
cout<<n-<<endl;
}
}

计蒜客 30990 - An Olympian Math Problem - [简单数学题][2018ICPC南京网络预赛A题]的更多相关文章

  1. 计蒜客 30996 - Lpl and Energy-saving Lamps - [线段树][2018ICPC南京网络预赛G题]

    题目链接:https://nanti.jisuanke.com/t/30996 During tea-drinking, princess, amongst other things, asked w ...

  2. 计蒜客 30990.An Olympian Math Problem-数学公式题 (ACM-ICPC 2018 南京赛区网络预赛 A)

    A. An Olympian Math Problem 54.28% 1000ms 65536K   Alice, a student of grade 66, is thinking about a ...

  3. 计蒜客 31452 - Supreme Number - [简单数学][2018ICPC沈阳网络预赛K题]

    题目链接:https://nanti.jisuanke.com/t/31452 A prime number (or a prime) is a natural number greater than ...

  4. 计蒜客 31001 - Magical Girl Haze - [最短路][2018ICPC南京网络预赛L题]

    题目链接:https://nanti.jisuanke.com/t/31001 题意: 一带权有向图,有 n 个节点编号1~n,m条有向边,现在一人从节点 1 出发,他有最多 k 次机会施展魔法使得某 ...

  5. 计蒜客 30999 - Sum - [找规律+线性筛][2018ICPC南京网络预赛J题]

    题目链接:https://nanti.jisuanke.com/t/30999 样例输入258 样例输出814 题意: squarefree数是指不含有完全平方数( 1 除外)因子的数, 现在一个数字 ...

  6. 计蒜客 30994 - AC Challenge - [状压DP][2018ICPC南京网络预赛E题]

    题目链接:https://nanti.jisuanke.com/t/30994 样例输入: 5 5 6 0 4 5 1 1 3 4 1 2 2 3 1 3 1 2 1 4 样例输出: 55 样例输入: ...

  7. 计蒜客 31453 - Hard to prepare - [递归][2018ICPC徐州网络预赛A题]

    题目链接:https://nanti.jisuanke.com/t/31453 After Incident, a feast is usually held in Hakurei Shrine. T ...

  8. 计蒜客 31447 - Fantastic Graph - [有源汇上下界可行流][2018ICPC沈阳网络预赛F题]

    题目链接:https://nanti.jisuanke.com/t/31447 "Oh, There is a bipartite graph.""Make it Fan ...

  9. 计蒜客 31460 - Ryuji doesn't want to study - [线段树][2018ICPC徐州网络预赛H题]

    题目链接:https://nanti.jisuanke.com/t/31460 Ryuji is not a good student, and he doesn't want to study. B ...

随机推荐

  1. NPOI把Excel导入到数据库

    二,把Excel中的数据导入到数据库的具体步骤: protected void Button1_Click(object sender, EventArgs e)        {           ...

  2. The confusion about jsp four scopes and ServletContext,HttpSession,HttpServletReqest,PageContext

    The jsp four scopes are same with ServletContext,HttpSession,HttpServletRequest,PageContext? How ser ...

  3. linux-ubuntu14.04以下使用gdb出现的问题

    问题: (gdb) list 没有符号表被读取. 请使用 "file" 命令. 原因事实上说的比較清楚,可运行文件里没有符号表,为什么会没有符号表呢.由于符号表是在编译过程中使用的 ...

  4. 如何在windows上测试iphone?

    本教程将会让你没有mac照样测试iphone,这是我折腾了几天总结下来的,希望对大家有用. 先来几张效果图吧 方法很简单,但是配置起来说实话有点麻烦,先在电脑上安装vmware,在安装osx系统,在安 ...

  5. ios开发之 -- NSData 和 NSString , UIImage 等之间的互转

    //NSData转换为UIImage NSData *imageData = [NSData dataWithContentsOfFile: imagePath]; UIImage *image = ...

  6. 系统日志:/var/log/messages

    /var/log/messages 存放的是系统的日志信息,它记录了各种事件,基本上什么应用都能往里写日志,在做故障诊断时可以首先查看该文件内容 [root@mirh5_center1_111.231 ...

  7. 【Java知识点专项练习】之 volatile 关键字的功能

    volatile是java中的一个类型修饰符.它是被设计用来修饰被不同线程访问和修改的变量.如果不加入volatile,基本上会导致这样的结果:要么无法编写多线程程序,要么编译器 失去大量优化的机会. ...

  8. nginx fastcgi.conf的参数

       编写FastCGI程序的时候有很多像php一样的参数可以获取到,并利用起来,下面就是FastCGI的一些参数.     fastcgi_param  SCRIPT_FILENAME    $do ...

  9. PHP关于=>和->以及::的用法

    1.=>的用法 在php中数组默认键名是整数,也可以自己定义任意字符键名(最好是有实际意义),如: $css=array('style'=>'0',‘color’=>‘green‘) ...

  10. MFC onchar()

    为什么在CView类中可以对ON_CHAR进行相应,添加消息处理函数onchar就可以了,但是在CDialog中要对ON_CHAR相应,直接添加不行? CView相当于Text控件,你可以在Text控 ...