sudo mv /home/common/下载/hadoop-2.7.2.tar.gz /usr/local
sudo tar -xzvf hadoop-2.7.2.tar.gz
sudo mv hadoop-2.7.2 hadoop #改个名

在etc/profile文件中添加

export HADOOP_HOME=/usr/local/hadoop
export PATH=.:$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin

 1.修改/usr/local/hadoop/etc/hadoop/hadoop-env.sh文件

export JAVA_HOME=/usr/lib/jvm/jdk1.8.0_121

2.修改/usr/local/hadoop/etc/hadoop/core-site.xml文件

<configuration>

        <property>
<name>fs.default.name</name>
<value>hdfs://master:9000</value>
</property>
<property>
<name>hadoop.tmp.dir</name>
<value>~/software/apache/hadoop-2.9.1/tmp</value>
</property>
<property>
<name>hadoop.native.lib</name>
<value>false</value>
</property> </configuration>

在/etc/hosts中添加自己的外网ip

XXXX    master

如果在工程中需要访问HDFS,需要在resources中添加 core-site.xml文件

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. See accompanying LICENSE file.
--> <!-- Put site-specific property overrides in this file. --> <configuration> <property>
<name>fs.defaultFS</name>
<value>hdfs://master:9000</value>
</property> </configuration>

3.修改/usr/local/hadoop/etc/hadoop/hdfs-site.xml文件

<configuration>

        <property>
<name>dfs.replication</name>
<value>1</value>
</property>
<property>
<name>dfs.name.dir</name>
<value>file:/home/lintong/software/apache/hadoop-2.9.1/tmp/dfs/name</value>
</property>
<property>
<name>dfs.data.dir</name>
<value>file:/home/lintong/software/apache/hadoop-2.9.1/tmp/dfs/data</value>
</property>
<property>
<name>dfs.namenode.checkpoint.dir</name>
<value>file:/home/lintong/software/apache/hadoop-2.9.1/tmp/dfs/namenode</value>
</property>
<property>
<name>dfs.permissions</name>
<value>false</value>
</property> </configuration>

4./usr/local/hadoop/etc/hadoop/mapred-site.xml(修改mapred-site.xml.template的那个文件)

<configuration>

        <property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property> </configuration>

5. /usr/local/hadoop/etc/hadoop/yarn-site.xml

<configuration>

<!-- Site specific YARN configuration properties -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property> </configuration>

6.使得/etc/profile生效

sudo source /etc/profile

 /etc/profile文件内容

export JAVA_HOME=/usr/lib/jvm/jdk1.8.0_121
export JRE_HOME=${JAVA_HOME}/jre
export CLASSPATH=.:${JAVA_HOME}/lib:${JRE_HOME}/lib
export PATH=${JAVA_HOME}/bin:$PATH export PATH=/usr/local/texlive/2015/bin/x86_64-linux:$PATH
export MANPATH=/usr/local/texlive/2015/texmf-dist/doc/man:$MANPATH
export INFOPATH=/usr/local/texlive/2015/texmf-dist/doc/info:$INFOPATH export HADOOP_HOME=/usr/local/hadoop
export PATH=.:$PATH:$JAVA_HOME/bin:$HADOOP_HOME/bin export M2_HOME=/opt/apache-maven-3.3.9
export M2=$M2_HOME/bin
export PATH=$M2:$PATH export GRADLE_HOME=/opt/gradle/gradle-3.4.1
export PATH=$GRADLE_HOME/bin:$PATH

 ~/.bashrc文件内容

export HADOOP_INSTALL=/usr/local/hadoop
export PATH=$PATH:$HADOOP_INSTALL/bin
export PATH=$PATH:$HADOOP_INSTALL/sbin
export HADOOP_MAPRED_HOME=$HADOOP_INSTALL
export HADOOP_COMMON_HOME=$HADOOP_INSTALL
export HADOOP_HDFS_HOME=$HADOOP_INSTALL
export YARN_HOME=$HADOOP_INSTALL

SSH和Hadoop用户设置可以参考

http://www.cnblogs.com/CheeseZH/p/5051135.html

http://www.powerxing.com/install-hadoop/

免密登录

cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys
$ ssh localhost

<i>如果遇到dataNode不能启动的问题,参考

http://www.aboutyun.com/thread-12803-1-1.html

去Hadoop/log目录下查看log日志文件,然后在/usr/local/hadoop/tmp/dfs/data/current目录下修改VERSION文件中的内容

<ii>ubuntu Hadoop启动报Error: JAVA_HOME is not set and could not be found解决办法

修改/etc/hadoop/hadoop-env.sh中设JAVA_HOME为绝对路径

Hadoop目录下的权限

格式化一个新的分布式文件系统

hdfs namenode -format

运行Hadoop

运行Hadoop示例

./bin/hadoop jar ./share/hadoop/mapreduce/hadoop-mapreduce-examples-2.7.2.jar pi 2 5

 输出

Number of Maps  = 2
Samples per Map = 5
Wrote input for Map #0
Wrote input for Map #1
Starting Job
17/03/26 11:49:47 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
17/03/26 11:49:47 INFO input.FileInputFormat: Total input paths to process : 2
17/03/26 11:49:47 INFO mapreduce.JobSubmitter: number of splits:2
17/03/26 11:49:48 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1490497943530_0002
17/03/26 11:49:48 INFO impl.YarnClientImpl: Submitted application application_1490497943530_0002
17/03/26 11:49:48 INFO mapreduce.Job: The url to track the job: http://master:8088/proxy/application_1490497943530_0002/
17/03/26 11:49:48 INFO mapreduce.Job: Running job: job_1490497943530_0002
17/03/26 11:49:55 INFO mapreduce.Job: Job job_1490497943530_0002 running in uber mode : false
17/03/26 11:49:55 INFO mapreduce.Job: map 0% reduce 0%
17/03/26 11:50:02 INFO mapreduce.Job: map 100% reduce 0%
17/03/26 11:50:08 INFO mapreduce.Job: map 100% reduce 100%
17/03/26 11:50:08 INFO mapreduce.Job: Job job_1490497943530_0002 completed successfully
17/03/26 11:50:08 INFO mapreduce.Job: Counters: 49
File System Counters
FILE: Number of bytes read=50
FILE: Number of bytes written=353898
FILE: Number of read operations=0
FILE: Number of large read operations=0
FILE: Number of write operations=0
HDFS: Number of bytes read=524
HDFS: Number of bytes written=215
HDFS: Number of read operations=11
HDFS: Number of large read operations=0
HDFS: Number of write operations=3
Job Counters
Launched map tasks=2
Launched reduce tasks=1
Data-local map tasks=2
Total time spent by all maps in occupied slots (ms)=9536
Total time spent by all reduces in occupied slots (ms)=3259
Total time spent by all map tasks (ms)=9536
Total time spent by all reduce tasks (ms)=3259
Total vcore-milliseconds taken by all map tasks=9536
Total vcore-milliseconds taken by all reduce tasks=3259
Total megabyte-milliseconds taken by all map tasks=9764864
Total megabyte-milliseconds taken by all reduce tasks=3337216
Map-Reduce Framework
Map input records=2
Map output records=4
Map output bytes=36
Map output materialized bytes=56
Input split bytes=288
Combine input records=0
Combine output records=0
Reduce input groups=2
Reduce shuffle bytes=56
Reduce input records=4
Reduce output records=0
Spilled Records=8
Shuffled Maps =2
Failed Shuffles=0
Merged Map outputs=2
GC time elapsed (ms)=319
CPU time spent (ms)=2570
Physical memory (bytes) snapshot=719585280
Virtual memory (bytes) snapshot=5746872320
Total committed heap usage (bytes)=513802240
Shuffle Errors
BAD_ID=0
CONNECTION=0
IO_ERROR=0
WRONG_LENGTH=0
WRONG_MAP=0
WRONG_REDUCE=0
File Input Format Counters
Bytes Read=236
File Output Format Counters
Bytes Written=97
Job Finished in 21.472 seconds
Estimated value of Pi is 3.60000000000000000000

可以访问 Web 界面 http://localhost:50070 查看 NameNode 和 Datanode 信息,还可以在线查看 HDFS 中的文件

启动 YARN 之后,运行实例的方法还是一样的,仅仅是资源管理方式、任务调度不同。观察日志信息可以发现,不启用 YARN 时,是 “mapred.LocalJobRunner” 在跑任务,启用 YARN 之后,是 “mapred.YARNRunner” 在跑任务。启动 YARN 有个好处是可以通过 Web 界面查看任务的运行情况:http://localhost:8088/cluster

点击history,查看每一个任务,如果遇到master:19888不能访问的情况,在目录下执行

mr-jobhistory-daemon.sh start historyserver

hdfs接触安全模式

bin/hadoop dfsadmin -safemode leave

关于Hadoop的架构请关注下面这篇博文的内容

Hadoop HDFS概念学习系列之初步掌握HDFS的架构及原理1(一)

关于Hadoop中HDFS的读取过程请关注下面这篇博文的内容

Hadoop HDFS概念学习系列之初步掌握HDFS的架构及原理2(二)

关于Hadoop中HDFS的写入过程请关注下面这篇博文的内容

Hadoop HDFS概念学习系列之初步掌握HDFS的架构及原理3(三)

关于Hadoop中SNN的作用请关注下面这篇博文的内容

http://blog.csdn.net/xh16319/article/details/31375197

Hadoop学习笔记——安装Hadoop的更多相关文章

  1. [转帖]hadoop学习笔记:hadoop文件系统浅析

    hadoop学习笔记:hadoop文件系统浅析 https://www.cnblogs.com/sharpxiajun/archive/2013/06/15/3137765.html 1.什么是分布式 ...

  2. 吴裕雄--天生自然HADOOP学习笔记:hadoop集群实现PageRank算法实验报告

    实验课程名称:大数据处理技术 实验项目名称:hadoop集群实现PageRank算法 实验类型:综合性 实验日期:2018年 6 月4日-6月14日 学生姓名 吴裕雄 学号 15210120331 班 ...

  3. Hadoop学习笔记(1)-Hadoop在Ubuntu的安装和使用

    由于小编在本学期有一门课程需要学习hadoop,需要在ubuntu的linux系统下搭建Hadoop环境,在这个过程中遇到一些问题,写下这篇博客来记录这个过程,并把分享给大家. Hadoop的安装方式 ...

  4. Hadoop学习笔记—6.Hadoop Eclipse插件的使用

    开篇:Hadoop是一个强大的并行软件开发框架,它可以让任务在分布式集群上并行处理,从而提高执行效率.但是,它也有一些缺点,如编码.调试Hadoop程序的难度较大,这样的缺点直接导致开发人员入门门槛高 ...

  5. [Hadoop] Hadoop学习笔记之Hadoop基础

    1 Hadoop是什么? Google公司发表了两篇论文:一篇论文是“The Google File System”,介绍如何实现分布式地存储海量数据:另一篇论文是“Mapreduce:Simplif ...

  6. Hadoop学习笔记【Hadoop家族成员概述】

    Hadoop家族成员概述 一.Hadoop简介 1.1 什么是Hadoop? Hadoop是一个分布式系统基础架构,由Apache基金会所开发,目前Yahoo!是其最重要的贡献者. Hadoop实现了 ...

  7. Hadoop学习笔记—3.Hadoop RPC机制的使用

    一.RPC基础概念 1.1 RPC的基础概念 RPC,即Remote Procdure Call,中文名:远程过程调用: (1)它允许一台计算机程序远程调用另外一台计算机的子程序,而不用去关心底层的网 ...

  8. Hadoop学习笔记(3) Hadoop I/O

    1. HDFS的数据完整性 HDFS会对写入的所有数据计算校验和,并在读取数据时验证校验和.datanode负责在验证收到的数据后存储数据及其校验和.正在写数据的客户端将数据及其校验和发送到由一系列d ...

  9. Hadoop学习笔记(3) Hadoop文件系统二

    1 查询文件系统 (1) 文件元数据:FileStatus,该类封装了文件系统中文件和目录的元数据,包括文件长度.块大小.备份.修改时间.所有者以及版权信息.FileSystem的getFileSta ...

随机推荐

  1. Lintcode: Sort Colors II 解题报告

    Sort Colors II 原题链接: http://lintcode.com/zh-cn/problem/sort-colors-ii/# Given an array of n objects ...

  2. iOS开发:一个高仿美团的团购ipad客户端的设计和实现(功能:根据拼音进行检索并展示数据,离线缓存团购数据,浏览记录与收藏记录的批量删除等)

    大致花了一个月时间,利用各种空闲时间,将这个客户端实现了,在这里主要是想记录下,设计的大体思路以及实现过程中遇到的坑...... 这个项目的github地址:https://github.com/wz ...

  3. 设计模式之策略模式(iOS开发,代码用Objective-C展示)

    在实际开发过程中,app需求都是由产品那边给出,往往是他给出第一版功能,我们写好代码后,会相应的给出第二版.第三版功能,而这些功能是在实际使用中,根据用户需求而不断增加的.如果在编码之初,我们并未认识 ...

  4. WPF学习笔记(2)——动画效果按钮变长

    说明(2017-6-12 11:26:48): 1. 视频教程里是把一个按钮点击一下,慢慢变长: 注意几个方面: (1)RoutedEvent="Button.Click",这里面 ...

  5. 2. AutoEncoder在NLP中的应用

    1. AutoEncoder介绍 2. Applications of AutoEncoder in NLP 3. Recursive Autoencoder(递归自动编码器) 4. Stacked ...

  6. ubi 文件系统加载失败原因记录

    尝试升级 kernel 到 4.4.12版本,然后出现 kernel 加载 ubi 文件系统失败的现象,现象如下 [ 3.152220] ubi0 error: vtbl_check: too lar ...

  7. Aspose.Cells Smart markers 基于模板导出Excel

    Aspose.Cells可以预先定义Excel模板,然后填充数据(官方文档:http://www.aspose.com/docs/display/cellsjava/Smart+Markers). 设 ...

  8. 如何检查CentOS服务器受到DDOS攻击

    登录到你的服务器以root用户执行下面的命令,使用它你可以检查你的服务器是在DDOS攻击与否: netstat -anp |grep 'tcp\|udp' | awk '{print $5}' | c ...

  9. linux rsync介绍(八)

    [教程主题]:rsync [1] rsync介绍 Rsync(Remote Synchronize) 是一个远程资料同步工具,可通过LAN/WAN快速同步多台主机,Rsync使用所为的“Rsync演算 ...

  10. hbase源码系列(十四)Compact和Split

    先上一张图讲一下Compaction和Split的关系,这样会比较直观一些. Compaction把多个MemStore flush出来的StoreFile合并成一个文件,而Split则是把过大的文件 ...