作者:[已重置]
链接:https://www.zhihu.com/question/40546280/answer/88539689
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

SMO(Sequential Minimal Optimization)是针对求解SVM问题的Lagrange对偶问题,一个二次规划式,开发的高效算法。传统的二次规划算法的计算开销正比于训练集的规模,而SMO基于问题本身的特性(KKT条件约束)对这个特殊的二次规划问题的求解过程进行优化。对偶问题中我们最后求解的变量只有Lagrange乘子向量,这个算法的基本思想就是每次都只选取一对,固定向量其他维度的元素的值,然后进行优化,直至收敛。

SMO干了什么?
首先,整个对偶问题的二次规划表达如下:

SMO在整个二次规划的过程中也没干别的,总共干了两件事:

  • 选取一对参数
  • 固定向量的其他参数,将代入上述表达式进行求最优解获得更新后的

SMO不断执行这两个步骤直至收敛。

因为有约束存在,实际上的关系也可以确定。这两个参数的和或者差是一个常数。
<img src="https://pic1.zhimg.com/071f3351b3eee2db40fea3ba944f9d7c_b.png" data-rawwidth="633" data-rawheight="274" class="origin_image zh-lightbox-thumb" width="633" data-original="https://pic1.zhimg.com/071f3351b3eee2db40fea3ba944f9d7c_r.png">所以虽然宣传上说是选择了一对

所以虽然宣传上说是选择了一对,但还是选择了其中一个,将另一个写作关于它的表达式代入目标函数求解。

为什么SMO跑的那么快,比提出之前的算法不知道高到哪里去了?
正如上面提到的,在固定其他参数以后,这就是一个单变量二次规划问题,仅有的约束也是这个变量,显然有闭式解。不必再调用数值优化算法。

KKT条件是对偶问题最优解的必要条件

除了第一个非负约束以外,其他约束都是根据目标函数推导得到的最优解必须满足的条件,如果违背了这些条件,那得到的解必然不是最优的,目标函数的值会减小。

所以在SMO迭代的两个步骤中,只要中有一个违背了KKT条件,这一轮迭代完成后,目标函数的值必然会增大。Generally speaking,KKT条件违背的程度越大,迭代后的优化效果越明显,增幅越大。

怎样跑的更快?
和梯度下降类似,我们要找到使之优化程度最大的方向(变量)进行优化。所以SMO先选取违背KKT条件程度最大的变量,那么第二个变量应该选择使目标函数值增大最快的变量,但是这个变量怎么找呢?比较各变量优化后对应的目标函数值的变化幅度?这个样子是不行的,复杂度太高了。

SMO使用了一个启发式的方法,当确定了第一个变量后,选择使两个变量对应样本之间最大的变量作为第二个变量。直观来说,更新两个差别很大的变量,比起相似的变量,会带给目标函数更大的变化。间隔的定义也可以借用偏差函数

我们要找的也就是使对于来说使最大的

很惭愧,只做了一点微小的工作。

References
[1] Platt, John. "Sequential minimal optimization: A fast algorithm for training support vector machines." (1998).

SMO算法(转)的更多相关文章

  1. 机器学习——支持向量机(SVM)之Platt SMO算法

    Platt SMO算法是通过一个外循环来选择第一个alpha值的,并且其选择过程会在两种方式之间进行交替: 一种方式是在所有数据集上进行单遍扫描,另一种方式则是在非边界alpha中实现单遍扫描. 所谓 ...

  2. 支持向量机原理(四)SMO算法原理

    支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理 支持向量机原理(五) ...

  3. SVM-非线性支持向量机及SMO算法

    SVM-非线性支持向量机及SMO算法 如果您想体验更好的阅读:请戳这里littlefish.top 线性不可分情况 线性可分问题的支持向量机学习方法,对线性不可分训练数据是不适用的,为了满足函数间隔大 ...

  4. 改进的SMO算法

    S. S. Keerthi等人在Improvements to Platt's SMO Algorithm for SVM Classifier Design一文中提出了对SMO算法的改进,纵观SMO ...

  5. [笔记]关于支持向量机(SVM)中 SMO算法的学习(一)理论总结

    1. 前言 最近又重新复习了一遍支持向量机(SVM).其实个人感觉SVM整体可以分成三个部分: 1. SVM理论本身:包括最大间隔超平面(Maximum Margin Classifier),拉格朗日 ...

  6. 关于SVM数学细节逻辑的个人理解(三) :SMO算法理解

    第三部分:SMO算法的个人理解 接下来的这部分我觉得是最难理解的?而且计算也是最难得,就是SMO算法. SMO算法就是帮助我们求解: s.t.   这个优化问题的. 虽然这个优化问题只剩下了α这一个变 ...

  7. 支持向量机(Support Vector Machine)-----SVM之SMO算法(转)

    此文转自两篇博文 有修改 序列最小优化算法(英语:Sequential minimal optimization, SMO)是一种用于解决支持向量机训练过程中所产生优化问题的算法.SMO由微软研究院的 ...

  8. 支持向量机(五)SMO算法

    11 SMO优化算法(Sequential minimal optimization) SMO算法由Microsoft Research的John C. Platt在1998年提出,并成为最快的二次规 ...

  9. 机器学习之支持向量机(二):SMO算法

    注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对 ...

  10. 支持向量机-SMO算法简化版

    SMO:序列最小优化 SMO算法:将大优化问题分解为多个小优化问题来求解 SMO算法的目标是求出一系列的alpha和b,一旦求出这些alpha,就很容易计算出权重向量w,并得到分隔超平面 工作原理:每 ...

随机推荐

  1. Microsoft Dynamics CRM 2011 面向Internet部署 (IFD) CRM 登录出现会话超时的解决办法

    一.IFD 登录的时候,过了一段时间,会马上出现“您的会话已过期”,怎么解决这个问题呢,可以通过改变这个时间.具体图如二 Link to Dynamics CRM Wiki Home Page 二.S ...

  2. 【appium】根据accessibility_id定位元素

    如何获得AccessibilityId 可以通过UIAutomatorViewer或者Appium Inspector获得.Accessibility ID在Android上面就等同于contentD ...

  3. Windows 7 With Sp1 简体中文旗舰版

    Windows 7 With Sp1 简体中文旗舰版(MSDN官方原版) 安装Windows 7对于硬件配置的基本要求: •1 GHz 32 位或 64 位处理器 •1 GB 内存(基于32 位)或 ...

  4. 在ASP.NET应用程序中使用身份模拟(Impersonation)

    摘要   缺省情况下,ASP.NET应用程序以本机的ASPNET帐号运行,该帐号属于普通用户组,权限受到一定的限制,以保障ASP.NET应用程序运行的安全.但是有时需要某个ASP.NET应用程序或者程 ...

  5. 如何在UltraEdit中高亮显示PB代码

    打开UE,从菜单中选择高级->配置… 点击打开按钮,注意文件WordFile.txt最后一个高亮显示语言的编号,格式为“ /L(number) ”,假设最后一个高亮显示语言的编号是15,修改UE ...

  6. 关于 eclipse startexplorer插件 快速打开文件夹

    转自:http://basti1302.github.io/startexplorer/ Just drag-and-drop the button to the Eclipse menu bar t ...

  7. Spring DI - 依赖注入

    1.IOC(DI) - 控制反转(依赖注入) 所谓的IOC称之为控制反转,简单来说就是将对象的创建的权利及对象的生命周期的管理过程交由Spring框架来处理,从此在开发过程中不再需要关注对象的创建和生 ...

  8. 学习笔记之FluentAssertions

    dotnet/src/MoqSample at master · haotang923/dotnet · GitHub https://github.com/htanghtang/dotnet/tre ...

  9. 利用python,简单的词语纠错

    利用python,编写一个简单的词语纠正修改器. 原文:http://norvig.com/spell-correct.html #!/usr/bin/env python # coding=utf- ...

  10. CorelDRAW X4常用快捷键大全

    材料/工具 CorelDRAW X4 方法 1 F1:帮助信息 F2:缩小 F3:放大 F4:缩放到将所有对象置于窗口中 F5:手绘(Freehand)工具 F6:矩形(Rectangle)工具 F7 ...