SMO算法(转)
链接:https://www.zhihu.com/question/40546280/answer/88539689
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。
SMO(Sequential Minimal Optimization)是针对求解SVM问题的Lagrange对偶问题,一个二次规划式,开发的高效算法。传统的二次规划算法的计算开销正比于训练集的规模,而SMO基于问题本身的特性(KKT条件约束)对这个特殊的二次规划问题的求解过程进行优化。对偶问题中我们最后求解的变量只有Lagrange乘子向量,这个算法的基本思想就是每次都只选取一对
,固定
向量其他维度的元素的值,然后进行优化,直至收敛。
SMO干了什么?
首先,整个对偶问题的二次规划表达如下:
SMO在整个二次规划的过程中也没干别的,总共干了两件事:
- 选取一对参数
- 固定
向量的其他参数,将
代入上述表达式进行求最优解获得更新后的
SMO不断执行这两个步骤直至收敛。
因为有约束存在,实际上
和
的关系也可以确定。
这两个参数的和或者差是一个常数。
<img src="https://pic1.zhimg.com/071f3351b3eee2db40fea3ba944f9d7c_b.png" data-rawwidth="633" data-rawheight="274" class="origin_image zh-lightbox-thumb" width="633" data-original="https://pic1.zhimg.com/071f3351b3eee2db40fea3ba944f9d7c_r.png">所以虽然宣传上说是选择了一对
所以虽然宣传上说是选择了一对,但还是选择了其中一个,将另一个写作关于它的表达式代入目标函数求解。
为什么SMO跑的那么快,比提出之前的算法不知道高到哪里去了?
正如上面提到的,在固定其他参数以后,这就是一个单变量二次规划问题,仅有的约束也是这个变量,显然有闭式解。不必再调用数值优化算法。
KKT条件是对偶问题最优解的必要条件:
除了第一个非负约束以外,其他约束都是根据目标函数推导得到的最优解必须满足的条件,如果违背了这些条件,那得到的解必然不是最优的,目标函数的值会减小。
所以在SMO迭代的两个步骤中,只要中有一个违背了KKT条件,这一轮迭代完成后,目标函数的值必然会增大。Generally speaking,KKT条件违背的程度越大,迭代后的优化效果越明显,增幅越大。
怎样跑的更快?
和梯度下降类似,我们要找到使之优化程度最大的方向(变量)进行优化。所以SMO先选取违背KKT条件程度最大的变量,那么第二个变量应该选择使目标函数值增大最快的变量,但是这个变量怎么找呢?比较各变量优化后对应的目标函数值的变化幅度?这个样子是不行的,复杂度太高了。
SMO使用了一个启发式的方法,当确定了第一个变量后,选择使两个变量对应样本之间最大的变量作为第二个变量。直观来说,更新两个差别很大的变量,比起相似的变量,会带给目标函数更大的变化。间隔的定义也可以借用偏差函数
我们要找的也就是使对于来说使
最大的
很惭愧,只做了一点微小的工作。
References
[1] Platt, John. "Sequential minimal optimization: A fast algorithm for training support vector machines." (1998).
SMO算法(转)的更多相关文章
- 机器学习——支持向量机(SVM)之Platt SMO算法
Platt SMO算法是通过一个外循环来选择第一个alpha值的,并且其选择过程会在两种方式之间进行交替: 一种方式是在所有数据集上进行单遍扫描,另一种方式则是在非边界alpha中实现单遍扫描. 所谓 ...
- 支持向量机原理(四)SMO算法原理
支持向量机原理(一) 线性支持向量机 支持向量机原理(二) 线性支持向量机的软间隔最大化模型 支持向量机原理(三)线性不可分支持向量机与核函数 支持向量机原理(四)SMO算法原理 支持向量机原理(五) ...
- SVM-非线性支持向量机及SMO算法
SVM-非线性支持向量机及SMO算法 如果您想体验更好的阅读:请戳这里littlefish.top 线性不可分情况 线性可分问题的支持向量机学习方法,对线性不可分训练数据是不适用的,为了满足函数间隔大 ...
- 改进的SMO算法
S. S. Keerthi等人在Improvements to Platt's SMO Algorithm for SVM Classifier Design一文中提出了对SMO算法的改进,纵观SMO ...
- [笔记]关于支持向量机(SVM)中 SMO算法的学习(一)理论总结
1. 前言 最近又重新复习了一遍支持向量机(SVM).其实个人感觉SVM整体可以分成三个部分: 1. SVM理论本身:包括最大间隔超平面(Maximum Margin Classifier),拉格朗日 ...
- 关于SVM数学细节逻辑的个人理解(三) :SMO算法理解
第三部分:SMO算法的个人理解 接下来的这部分我觉得是最难理解的?而且计算也是最难得,就是SMO算法. SMO算法就是帮助我们求解: s.t. 这个优化问题的. 虽然这个优化问题只剩下了α这一个变 ...
- 支持向量机(Support Vector Machine)-----SVM之SMO算法(转)
此文转自两篇博文 有修改 序列最小优化算法(英语:Sequential minimal optimization, SMO)是一种用于解决支持向量机训练过程中所产生优化问题的算法.SMO由微软研究院的 ...
- 支持向量机(五)SMO算法
11 SMO优化算法(Sequential minimal optimization) SMO算法由Microsoft Research的John C. Platt在1998年提出,并成为最快的二次规 ...
- 机器学习之支持向量机(二):SMO算法
注:关于支持向量机系列文章是借鉴大神的神作,加以自己的理解写成的:若对原作者有损请告知,我会及时处理.转载请标明来源. 序: 我在支持向量机系列中主要讲支持向量机的公式推导,第一部分讲到推出拉格朗日对 ...
- 支持向量机-SMO算法简化版
SMO:序列最小优化 SMO算法:将大优化问题分解为多个小优化问题来求解 SMO算法的目标是求出一系列的alpha和b,一旦求出这些alpha,就很容易计算出权重向量w,并得到分隔超平面 工作原理:每 ...
随机推荐
- 添加pptp、l2tp客户端
一.编译 -> Network -> Network ->VPN 二.配置 1. L2TP配置 network配置文件增加: config interface 'vpn1' opti ...
- LAMP兄弟连 李强强 GVIM配置文件完整版
转自http://blog.sina.com.cn/s/blog_5fbb378c01016npv.html "自己看着李强强老师视频代码手写打的.之前最后的一个gvim默认函数方法没放上, ...
- 【Spring学习笔记-MVC-2】spring导出Excel
说明: 1.结合Spring MVC实现Excel导出功能: 2. 在MVC配置文件中配置Excel视图解析器: 需要的jar包 以poi开头的jar包都是必须的 web.xml <?xml v ...
- Appium录制脚本520-2
1.录制自动化脚本 场景:启动雪球,点击我的,登陆雪球,选择手机及其他登陆,输入手机号 2.使用Java进行测试Appium测试 2.1创建Java工程 file-创建maven工程-填写GroupI ...
- 利用ubuntu的alias命令来简化许多复杂难打的命令
利用alias,可以将你要长期执行的命令,用一个你最喜欢的名字记下来, 用你最喜欢的编辑器打开.bashrc文件( 如$ vim ~/.bashrc) 在最后面输入: alias myssh='ss ...
- jquery拖动分页
scrollpagination.js /* ** Anderson Ferminiano ** contato@andersonferminiano.com -- feel free to cont ...
- 【基础知识五】神经网络NN
常用模型:BP神经网络,RBF神经网络 一.神经元模型 | 连接权,阈值,激活函数 1. 输入信号通过带权重的连接(connection)进行传递,神经元接收到的总输入值将与神经元的阈值进行比较, ...
- PHP流程控制 - if 语句
PHP - if 语句 if 语句用于仅当指定条件成立时执行代码. 语法 if (条件) { 条件成立时要执行的代码; } 如果当前时间小于 20,下面的实例将输出 "Have a good ...
- 伯克利推出「看视频学动作」的AI智能体
伯克利曾经提出 DeepMimic框架,让智能体模仿参考动作片段来学习高难度技能.但这些参考片段都是经过动作捕捉合成的高度结构化数据,数据本身的获取需要很高的成本.而近日,他们又更进一步,提出了可以直 ...
- diskspd的使用
参数翻译 可测试目标: file_path 文件abc.file #<physical drive number> #1为第一块物理磁盘[谨慎,别拿系统盘测试,一般用于准备投入的数据磁盘测 ...