H2O中的随机森林算法介绍及其项目实战(python实现)

包的引入:from h2o.estimators.random_forest import H2ORandomForestEstimator

H2ORandomForestEstimator 的常用方法和参数介绍:

(一)建模方法:

model =H2ORandomForestEstimator(ntrees=n,max_depth =m)

model.train(x=random_pv.names,y='Catrgory',training_frame=trainData)

通过trainData来构建随机森林模型,model.train中的trainData训练集预测变量名称预测 响应变量的名称

(二)预测方法:

pre_tag=H2ORandomForestEstimator.predict(model ,test_data) 利用训练好的模型来对测试集进行预测,其中的model训练好的模型test_data:测试集

(三)算法参数说明:

(1)ntrees:构建模型时要生成的树的棵树。

(2)max_depth :每棵树的最大深度。

项目要求:

题目一: 利用train.csv中的数据,通过H2O框架中的随机森林算法构建分类模型,然后利用模型对 test.csv中的数据进行预测,并计算分类的准确度进而评价模型的分类效果;通过调节参 数,观察分类准确度的变化情况。 注:准确度=预测正确的数占样本数的比例

题目二: 通过H2o Flow 的随机森林算法,用同题目一中所用同样的训练数据和参数,构建模型; 参看模型中特征的重要性程度,从中选取前8个特征,再去训练模型,并重新预测结果, 进而计算分类的准确度。

需求完成内容:2个题目的代码,认为最好的准确度的输出值和test数据与预测结果合并 后的数据集,命名为predict.csv

python实现代码如下:

(1) 题目一:

#手动进行调节参数得到最好的准确率
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import h2o
h2o.init()
from h2o.estimators.random_forest import H2ORandomForestEstimator
from __future__ import division
df=h2o.import_file('train.csv')
trainData=df[2:] model=H2ORandomForestEstimator(ntrees=6,max_depth =16)
model.train(x=trainData.names,y='Catrgory',training_frame=trainData)
df2=h2o.import_file('test.csv')
test_data=df2[2:]
pre_tag=H2ORandomForestEstimator.predict(model ,test_data)
predict=df2.concat(pre_tag)
dfnew=predict[predict['Catrgory']==predict['predict']]
Precision=dfnew.nrow/predict.nrow print(Precision)
h2o.download_csv(predict,'predict.csv')

运行结果最好为87.0833%-6-16,如下

#for循环进行调节参数得到最好的准确率
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import h2o
h2o.init()
from h2o.estimators.random_forest import H2ORandomForestEstimator
from __future__ import division
df=h2o.import_file('train.csv')
trainData=df[2:]
df2=h2o.import_file('test.csv')
test_data=df2[2:]
Precision=0
nt=0
md=0
for i in range(1,50):
for j in range(1,50):
model=H2ORandomForestEstimator(ntrees=i,max_depth =j)
model.train(x=trainData.names,y='Catrgory',training_frame=trainData)
pre_tag=H2ORandomForestEstimator.predict(model ,test_data)
predict=df2.concat(pre_tag)
dfnew=predict[predict['Catrgory']==predict['predict']]
p=dfnew.nrow/predict.nrow
if Precision<p:
Precision=p
nt=i
md=j print(Precision)
print(i)
print(j)
h2o.download_csv(predict,'predict.csv')

 运行结果最好为87.5%-49-49,如下

(2)题目二:建模如下,之后挑出排名前8的特征进行再次建模

#手动调节参数得到最大准确率
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import h2o
h2o.init()
from h2o.estimators.random_forest import H2ORandomForestEstimator
from __future__ import division
df=h2o.import_file('train.csv')
trainData=df[['Average_speed','r_a','r_b','v_a','v_d','Average_RPM','Variance_speed','v_c','Catrgory']]
df2=h2o.import_file('test.csv')
test_data=df2[['Average_speed','r_a','r_b','v_a','v_d','Average_RPM','Variance_speed','v_c','Catrgory']] model=H2ORandomForestEstimator(ntrees=5,max_depth =18)
model.train(x=trainData.names,y='Catrgory',training_frame=trainData) pre_tag=H2ORandomForestEstimator.predict(model ,test_data)
predict=df2.concat(pre_tag)
dfnew=predict[predict['Catrgory']==predict['predict']]
Precision=dfnew.nrow/predict.nrow print(Precision)
h2o.download_csv(predict,'predict.csv')

  运行结果最好为87.5%-5-18,如下

#for循环调节参数得到最大正确率
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import h2o
h2o.init()
from h2o.estimators.random_forest import H2ORandomForestEstimator
from __future__ import division
df=h2o.import_file('train.csv')
trainData=df[['Average_speed','r_a','r_b','v_a','v_d','Average_RPM','Variance_speed','v_c','Catrgory']]
df2=h2o.import_file('test.csv')
test_data=df2[['Average_speed','r_a','r_b','v_a','v_d','Average_RPM','Variance_speed','v_c','Catrgory']]
Precision=0
nt=0
md=0
for i in range(1,50):
for j in range(1,50):
model=H2ORandomForestEstimator(ntrees=i,max_depth =j)
model.train(x=trainData.names,y='Catrgory',training_frame=trainData)
pre_tag=H2ORandomForestEstimator.predict(model ,test_data)
predict=df2.concat(pre_tag)
dfnew=predict[predict['Catrgory']==predict['predict']]
p=dfnew.nrow/predict.nrow
if Precision<p:
Precision=p
nt=i
md=j print(Precision)
print(i)
print(j)
h2o.download_csv(predict,'predict.csv')

 运行结果最好为87.5%-49-49,如下 

H2O中的随机森林算法介绍及其项目实战(python实现)的更多相关文章

  1. 随机森林入门攻略(内含R、Python代码)

    随机森林入门攻略(内含R.Python代码) 简介 近年来,随机森林模型在界内的关注度与受欢迎程度有着显著的提升,这多半归功于它可以快速地被应用到几乎任何的数据科学问题中去,从而使人们能够高效快捷地获 ...

  2. R语言︱决策树族——随机森林算法

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:有一篇<有监督学习选择深度学习 ...

  3. Python机器学习笔记——随机森林算法

    随机森林算法的理论知识 随机森林是一种有监督学习算法,是以决策树为基学习器的集成学习算法.随机森林非常简单,易于实现,计算开销也很小,但是它在分类和回归上表现出非常惊人的性能,因此,随机森林被誉为“代 ...

  4. 用Python实现随机森林算法,深度学习

    用Python实现随机森林算法,深度学习 拥有高方差使得决策树(secision tress)在处理特定训练数据集时其结果显得相对脆弱.bagging(bootstrap aggregating 的缩 ...

  5. spark 随机森林算法案例实战

    随机森林算法 由多个决策树构成的森林,算法分类结果由这些决策树投票得到,决策树在生成的过程当中分别在行方向和列方向上添加随机过程,行方向上构建决策树时采用放回抽样(bootstraping)得到训练数 ...

  6. RandomForest 随机森林算法与模型参数的调优

    公号:码农充电站pro 主页:https://codeshellme.github.io 本篇文章来介绍随机森林(RandomForest)算法. 1,集成算法之 bagging 算法 在前边的文章& ...

  7. Bagging与随机森林算法原理小结

    在集成学习原理小结中,我们讲到了集成学习有两个流派,一个是boosting派系,它的特点是各个弱学习器之间有依赖关系.另一种是bagging流派,它的特点是各个弱学习器之间没有依赖关系,可以并行拟合. ...

  8. R语言︱机器学习模型评估方案(以随机森林算法为例)

    笔者寄语:本文中大多内容来自<数据挖掘之道>,本文为读书笔记.在刚刚接触机器学习的时候,觉得在监督学习之后,做一个混淆矩阵就已经足够,但是完整的机器学习解决方案并不会如此草率.需要完整的评 ...

  9. 随机森林算法-Deep Dive

    0-写在前面 随机森林,指的是利用多棵树对样本进行训练并预测的一种分类器.该分类器最早由Leo Breiman和Adele Cutler提出.简单来说,是一种bagging的思想,采用bootstra ...

随机推荐

  1. PostgreSQL基础命令

    1. 查看数字库和表 切换用户postgres su postgres 执行psql进入后台(就像执行mysql进入后台一样) 2. 更新postgres密码 \password 3. 创建数据库用户 ...

  2. Linux查看文件夹占用空间

    du -sh *   查看当前目录所有文件的各个大小/home/econf>du -sh *427M apache-tomcat-6.0.2016K bin44M boot6.7M filese ...

  3. Java – How to convert a primitive Array to List

    Java – How to convert a primitive Array to ListCode snippets to convert a primitive array int[] to a ...

  4. js scrollIntoView 滚动到元素可视区域

    老是忘记这个函数名,记录一下啊 // 滚动到可视区域 document.querySelector(".loading").scrollIntoView()

  5. Python 爬虫 大量数据清洗 ---- sql语句优化

    . 问题描述 在做爬虫的时候,数据量很大,大约有五百百万条数据,假设有个字段是conmany_name(拍卖公司名称),我们现在需要从五百万条数据里面查找出来五十家拍卖公司, 并且要求字段 time( ...

  6. springboot 中使用Druid 数据源提供数据库监控

    一.springboot 中注册 Servlet/Filter/Listener 的方式有两种,1 通过代码注册 ServletRegistrationBean. FilterRegistration ...

  7. ubuntu14.4.4安装smb服务实现文件共享

    1.软件安装,ubuntu14需要安装的软件有3个 安装服务前养成习惯 sudo apt-get upgrade 首先切换到超级用户  su - root sudo apt-get install s ...

  8. cocos2d-x 模态对话框的实现

    心情不好,恩.不扯淡了.直接讲. ================================== 在泰然看了一篇实现模态对话框的文章,写的还不错,然后在其基础上加了我简单加了一层灰色透明背景,这 ...

  9. 全局获取 (Activity)Context,实现全局弹出 Dialog

    为什么需要一个全局的 (Activity)Context 需求1:在进入 app 的时候,要求做版本检测,有新的版本的时候,弹出一个 AlertDialog,提示用户版本更新 需求2:从别的设备挤下来 ...

  10. mysql获得60天前unix时间示例

    在mysql中获取多少天前的unix时间的方法.首先根据now()获得当前时间,使用adddate()方法获得60天前时间,使用unix_timestamp()方法转换时间类型 select UNIX ...