Exercise:Learning color features with Sparse Autoencoders

习题链接:Exercise:Learning color features with Sparse Autoencoders

sparseAutoencoderLinearCost.m

function [cost,grad,features] = sparseAutoencoderLinearCost(theta, visibleSize, hiddenSize, ...
lambda, sparsityParam, beta, data)
% -------------------- YOUR CODE HERE --------------------
% Instructions:
% Copy sparseAutoencoderCost in sparseAutoencoderCost.m from your
% earlier exercise onto this file, renaming the function to
% sparseAutoencoderLinearCost, and changing the autoencoder to use a
% linear decoder.
% -------------------- YOUR CODE HERE -------------------- % W1 is a hiddenSize * visibleSize matrix
W1 = reshape(theta(:hiddenSize*visibleSize), hiddenSize, visibleSize);
% W2 is a visibleSize * hiddenSize matrix
W2 = reshape(theta(hiddenSize*visibleSize+:*hiddenSize*visibleSize), visibleSize, hiddenSize);
% b1 is a hiddenSize * vector
b1 = theta(*hiddenSize*visibleSize+:*hiddenSize*visibleSize+hiddenSize);
% b2 is a visible * vector
b2 = theta(*hiddenSize*visibleSize+hiddenSize+:end); numCases = size(data, ); % forward propagation
z2 = W1 * data + repmat(b1, , numCases);
a2 = sigmoid(z2);
z3 = W2 * a2 + repmat(b2, , numCases);
a3 = z3; % error
sqrerror = (data - a3) .* (data - a3);
error = sum(sum(sqrerror)) / ( * numCases);
% weight decay
wtdecay = (sum(sum(W1 .* W1)) + sum(sum(W2 .* W2))) / ;
% sparsity
rho = sum(a2, ) ./ numCases;
divergence = sparsityParam .* log(sparsityParam ./ rho) + ( - sparsityParam) .* log(( - sparsityParam) ./ ( - rho));
sparsity = sum(divergence); cost = error + lambda * wtdecay + beta * sparsity; % delta3 is a visibleSize * numCases matrix
delta3 = -(data - a3);
% delta2 is a hiddenSize * numCases matrix
sparsityterm = beta * (-sparsityParam ./ rho + (-sparsityParam) ./ (-rho));
delta2 = (W2' * delta3 + repmat(sparsityterm, 1, numCases)) .* sigmoiddiff(z2); W1grad = delta2 * data' ./ numCases + lambda * W1;
b1grad = sum(delta2, ) ./ numCases; W2grad = delta3 * a2' ./ numCases + lambda * W2;
b2grad = sum(delta3, ) ./ numCases; %-------------------------------------------------------------------
% After computing the cost and gradient, we will convert the gradients back
% to a vector format (suitable for minFunc). Specifically, we will unroll
% your gradient matrices into a vector. grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)]; end function sigm = sigmoid(x) sigm = ./ ( + exp(-x));
end function sigmdiff = sigmoiddiff(x) sigmdiff = sigmoid(x) .* ( - sigmoid(x));
end

如果跑出来是这样的,可能是把a3 = z3写成了a3 = sigmoid(z3)

【DeepLearning】Exercise:Learning color features with Sparse Autoencoders的更多相关文章

  1. 【DeepLearning】Exercise:Self-Taught Learning

    Exercise:Self-Taught Learning 习题链接:Exercise:Self-Taught Learning feedForwardAutoencoder.m function [ ...

  2. 【DeepLearning】Exercise:Convolution and Pooling

    Exercise:Convolution and Pooling 习题链接:Exercise:Convolution and Pooling cnnExercise.m %% CS294A/CS294 ...

  3. 【DeepLearning】Exercise: Implement deep networks for digit classification

    Exercise: Implement deep networks for digit classification 习题链接:Exercise: Implement deep networks fo ...

  4. 【DeepLearning】Exercise:PCA and Whitening

    Exercise:PCA and Whitening 习题链接:Exercise:PCA and Whitening pca_gen.m %%============================= ...

  5. 【DeepLearning】Exercise:Softmax Regression

    Exercise:Softmax Regression 习题的链接:Exercise:Softmax Regression softmaxCost.m function [cost, grad] = ...

  6. 【DeepLearning】Exercise:PCA in 2D

    Exercise:PCA in 2D 习题的链接:Exercise:PCA in 2D pca_2d.m close all %%=================================== ...

  7. 【DeepLearning】Exercise:Vectorization

    Exercise:Vectorization 习题的链接:Exercise:Vectorization 注意点: MNIST图片的像素点已经经过归一化. 如果再使用Exercise:Sparse Au ...

  8. 【DeepLearning】Exercise:Sparse Autoencoder

    Exercise:Sparse Autoencoder 习题的链接:Exercise:Sparse Autoencoder 注意点: 1.训练样本像素值需要归一化. 因为输出层的激活函数是logist ...

  9. 【UFLDL】Exercise: Convolutional Neural Network

    这个exercise需要完成cnn中的forward pass,cost,error和gradient的计算.需要弄清楚每一层的以上四个步骤的原理,并且要充分利用matlab的矩阵运算.大概把过程总结 ...

随机推荐

  1. 在Linux下锁住键盘和鼠标而不锁屏

    假如在你正看着屏幕上的某些重要的事情时,你不想让你的小猫或者小狗在你的键盘上行走,或者让你的孩子在键盘上瞎搞一气,那我建议你试试 xtrlock 这个工具. 假如在你正看着屏幕上的某些重要的事情时,你 ...

  2. 【转】字符编码笔记:ASCII,Unicode 和 UTF-8

    原文:http://www.ruanyifeng.com/blog/2007/10/ascii_unicode_and_utf-8.html https://www.key-shortcut.com/ ...

  3. GitHub最新命令使用教程

    一.创建github仓库并提交代码 1.在github创建public仓库 2.会生成一个git地址 https://github.com/ae6623/Zebra.git 3.在本地打开命令,在文件 ...

  4. [RxJS] Build your own RxJS

    JavaScript has multiple APIs that use callback functions that all do nearly the same thing with slig ...

  5. POJ 3009:Curling 2.0 推箱子

    Curling 2.0 Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 14090   Accepted: 5887 Desc ...

  6. android中RecyclerView控件实现长按弹出PopupMenu菜单功能

    之前写过一篇文章:android中实现简单的聊天功能 现在是在之前功能的基础上,添加一个长按聊天记录,删除对应聊天记录的功能 RecyclerView控件,没有对应的长按事件,我们需要自己手工添加,修 ...

  7. Initialization failed for Block pool <registering> (Datanode Uuid unassigned) service to IP1:8020 Invalid volume failure config value: 1

    2017-02-27 16:19:44,739 ERROR datanode.DataNode: Initialization failed for Block pool <registerin ...

  8. 微信小程序 - 自适应swiper高度(非组件)

    微信小程序swiper默认高度375rpx,一旦超过这高度,就滑动不到内容了,我们利用css3可以很简单做到这件事情 原理: 利用css3 横轴滚动属性overflow:scroll,设置死swipe ...

  9. 使用Spring框架入门一:基于XML配置的IOC/DI的使用

    一.Spring框架 1.方法一:逐项导入基础依赖包: spring-core.spring-beans.spring-context.spring-expression 2.方法二:最简洁的导入,直 ...

  10. C# 通过SendMessage获取浏览器地址栏的地址

    1:通过SPY++获得地址栏的层次结构,然后一层一层获得 2:代码 using System; using System.Collections.Generic; using System.Linq; ...