Exercise:Learning color features with Sparse Autoencoders

习题链接:Exercise:Learning color features with Sparse Autoencoders

sparseAutoencoderLinearCost.m

function [cost,grad,features] = sparseAutoencoderLinearCost(theta, visibleSize, hiddenSize, ...
lambda, sparsityParam, beta, data)
% -------------------- YOUR CODE HERE --------------------
% Instructions:
% Copy sparseAutoencoderCost in sparseAutoencoderCost.m from your
% earlier exercise onto this file, renaming the function to
% sparseAutoencoderLinearCost, and changing the autoencoder to use a
% linear decoder.
% -------------------- YOUR CODE HERE -------------------- % W1 is a hiddenSize * visibleSize matrix
W1 = reshape(theta(:hiddenSize*visibleSize), hiddenSize, visibleSize);
% W2 is a visibleSize * hiddenSize matrix
W2 = reshape(theta(hiddenSize*visibleSize+:*hiddenSize*visibleSize), visibleSize, hiddenSize);
% b1 is a hiddenSize * vector
b1 = theta(*hiddenSize*visibleSize+:*hiddenSize*visibleSize+hiddenSize);
% b2 is a visible * vector
b2 = theta(*hiddenSize*visibleSize+hiddenSize+:end); numCases = size(data, ); % forward propagation
z2 = W1 * data + repmat(b1, , numCases);
a2 = sigmoid(z2);
z3 = W2 * a2 + repmat(b2, , numCases);
a3 = z3; % error
sqrerror = (data - a3) .* (data - a3);
error = sum(sum(sqrerror)) / ( * numCases);
% weight decay
wtdecay = (sum(sum(W1 .* W1)) + sum(sum(W2 .* W2))) / ;
% sparsity
rho = sum(a2, ) ./ numCases;
divergence = sparsityParam .* log(sparsityParam ./ rho) + ( - sparsityParam) .* log(( - sparsityParam) ./ ( - rho));
sparsity = sum(divergence); cost = error + lambda * wtdecay + beta * sparsity; % delta3 is a visibleSize * numCases matrix
delta3 = -(data - a3);
% delta2 is a hiddenSize * numCases matrix
sparsityterm = beta * (-sparsityParam ./ rho + (-sparsityParam) ./ (-rho));
delta2 = (W2' * delta3 + repmat(sparsityterm, 1, numCases)) .* sigmoiddiff(z2); W1grad = delta2 * data' ./ numCases + lambda * W1;
b1grad = sum(delta2, ) ./ numCases; W2grad = delta3 * a2' ./ numCases + lambda * W2;
b2grad = sum(delta3, ) ./ numCases; %-------------------------------------------------------------------
% After computing the cost and gradient, we will convert the gradients back
% to a vector format (suitable for minFunc). Specifically, we will unroll
% your gradient matrices into a vector. grad = [W1grad(:) ; W2grad(:) ; b1grad(:) ; b2grad(:)]; end function sigm = sigmoid(x) sigm = ./ ( + exp(-x));
end function sigmdiff = sigmoiddiff(x) sigmdiff = sigmoid(x) .* ( - sigmoid(x));
end

如果跑出来是这样的,可能是把a3 = z3写成了a3 = sigmoid(z3)

【DeepLearning】Exercise:Learning color features with Sparse Autoencoders的更多相关文章

  1. 【DeepLearning】Exercise:Self-Taught Learning

    Exercise:Self-Taught Learning 习题链接:Exercise:Self-Taught Learning feedForwardAutoencoder.m function [ ...

  2. 【DeepLearning】Exercise:Convolution and Pooling

    Exercise:Convolution and Pooling 习题链接:Exercise:Convolution and Pooling cnnExercise.m %% CS294A/CS294 ...

  3. 【DeepLearning】Exercise: Implement deep networks for digit classification

    Exercise: Implement deep networks for digit classification 习题链接:Exercise: Implement deep networks fo ...

  4. 【DeepLearning】Exercise:PCA and Whitening

    Exercise:PCA and Whitening 习题链接:Exercise:PCA and Whitening pca_gen.m %%============================= ...

  5. 【DeepLearning】Exercise:Softmax Regression

    Exercise:Softmax Regression 习题的链接:Exercise:Softmax Regression softmaxCost.m function [cost, grad] = ...

  6. 【DeepLearning】Exercise:PCA in 2D

    Exercise:PCA in 2D 习题的链接:Exercise:PCA in 2D pca_2d.m close all %%=================================== ...

  7. 【DeepLearning】Exercise:Vectorization

    Exercise:Vectorization 习题的链接:Exercise:Vectorization 注意点: MNIST图片的像素点已经经过归一化. 如果再使用Exercise:Sparse Au ...

  8. 【DeepLearning】Exercise:Sparse Autoencoder

    Exercise:Sparse Autoencoder 习题的链接:Exercise:Sparse Autoencoder 注意点: 1.训练样本像素值需要归一化. 因为输出层的激活函数是logist ...

  9. 【UFLDL】Exercise: Convolutional Neural Network

    这个exercise需要完成cnn中的forward pass,cost,error和gradient的计算.需要弄清楚每一层的以上四个步骤的原理,并且要充分利用matlab的矩阵运算.大概把过程总结 ...

随机推荐

  1. Window配置Redis环境和简单使用

    一.关于Redis Redis是一个开源(BSD许可),内存存储的数据结构服务器,可用作数据库,高速缓存和消息队列代理.它支持字符串.哈希表.列表.集合.有序集合,位图,hyperloglogs等数据 ...

  2. 无脑抢标——算了吧

    第一版时,我对拍拍贷是恐惧的,缓解我的恐惧的方法,就是寻找尽可能安全的方案.然后,我就发现了这个策略:超过信用等级普通利率的标的.A标一般16,B一般18--那我就寻找大于16的A,大于18的B,C我 ...

  3. DevExpress去除多国语言包

    DevExpress作为windows开发中较为强大的第三方组件,能极大的提高编程效率和界面效果.但也要引用它较多的dll文件,它专门有个查看dll程序集依赖的工具,在VS的工具菜单下: 在VS的工具 ...

  4. 关于微服务、SOA、以及API的理解

    现在微服务.SOA.RESTful API设计等在各大公司很流行.微服务(micro services)这个概念不是新概念,很多公司已经在实践了,例如亚马逊.Google.FaceBook,Aliba ...

  5. Java中监控文件变化的多种方案

    一.使用Apache.Common.io库 package yungoal.huafeng.utils.files; import com.sun.deploy.util.SyncFileAccess ...

  6. 机器学习中,使用NMS对框取优

    一.NMS实现代码 # http://www.pyimagesearch.com/2015/02/16/faster-non-maximum-suppression-python/ import nu ...

  7. SqlServer插入1000条记录

    1.想在SqlServer中插入指定数量的测试记录怎么办? 2.解决: DECLARE @var INT ) BEGIN INSERT INTO test (Name) VALUES (convert ...

  8. stingray中modal window

    自定义内容modal window //show window for D&B suggestions function showDBMatch(resp) { console.log('xx ...

  9. unity的 Social API

    孙广东  2015.12.23 Social API Social API 是訪问的Unity 的point 社会功能.如:• 用户配置文件• 好友列表• 成就• 统计 / 排行榜      它提供了 ...

  10. OpenERP7测试手记之 - EMail配置 转

    转自http://blog.sina.com.cn/s/blog_6d5929a00101b74y.html 在OpenERP中进行Email配置要注意以下几点: 1.如下面两个图,公司的“电子邮件” ...