hbase表的多版本读写
TTL(Time To Live)生存期
hbase表默认保存一个版本的数据
hbase(main):123:0> create 't_name','st1'
Created table t_name
Took 1.3807 seconds
=> Hbase::Table - t_name
hbase(main):124:0> desc 't_name'
Table t_name is ENABLED
t_name
COLUMN FAMILIES DESCRIPTION
{NAME => 'st1', VERSIONS => '1', EVICT_BLOCKS_ON_CLOSE => 'false', NEW_VERSION_BEHAVIOR => 'false', KEEP_DELETED_CELLS => 'FALSE', CACHE_DATA_ON_WRITE => 'false', DATA_BLOCK_ENC
ODING => 'NONE', TTL => 'FOREVER', MIN_VERSIONS => '0', REPLICATION_SCOPE => '0', BLOOMFILTER => 'ROW', CACHE_INDEX_ON_WRITE => 'false', IN_MEMORY => 'false', CACHE_BLOOMS_ON_WR
ITE => 'false', PREFETCH_BLOCKS_ON_OPEN => 'false', COMPRESSION => 'NONE', BLOCKCACHE => 'true', BLOCKSIZE => '65536'}
1 row(s)
Took 0.0310 seconds
添加一个列族
hbase(main):126:0> alter 't_name',{NAME=>'st2'}
Updating all regions with the new schema...
All regions updated.
Done.
Took 1.5367 seconds
hbase(main):127:0> desc 't_name'
Table t_name is DISABLED
t_name
COLUMN FAMILIES DESCRIPTION
{NAME => 'st1', VERSIONS => '1', EVICT_BLOCKS_ON_CLOSE => 'false', NEW_VERSION_BEHAVIOR => 'false', KEEP_DELETED_CELLS => 'FALSE', CACHE_DATA_ON_WRITE => 'false', DATA_BLOCK_ENC
ODING => 'NONE', TTL => 'FOREVER', MIN_VERSIONS => '0', REPLICATION_SCOPE => '0', BLOOMFILTER => 'ROW', CACHE_INDEX_ON_WRITE => 'false', IN_MEMORY => 'false', CACHE_BLOOMS_ON_WR
ITE => 'false', PREFETCH_BLOCKS_ON_OPEN => 'false', COMPRESSION => 'NONE', BLOCKCACHE => 'true', BLOCKSIZE => '65536'}
{NAME => 'st2', VERSIONS => '1', EVICT_BLOCKS_ON_CLOSE => 'false', NEW_VERSION_BEHAVIOR => 'false', KEEP_DELETED_CELLS => 'FALSE', CACHE_DATA_ON_WRITE => 'false', DATA_BLOCK_ENC
ODING => 'NONE', TTL => 'FOREVER', MIN_VERSIONS => '0', REPLICATION_SCOPE => '0', BLOOMFILTER => 'ROW', CACHE_INDEX_ON_WRITE => 'false', IN_MEMORY => 'false', CACHE_BLOOMS_ON_WR
ITE => 'false', PREFETCH_BLOCKS_ON_OPEN => 'false', COMPRESSION => 'NONE', BLOCKCACHE => 'true', BLOCKSIZE => '65536'}
2 row(s)
Took 0.0147 seconds
修改版本数:
hbase(main):151:0> alter 't_name',{NAME=>'st1'},{NAME=>'st1',VERSIONS=>5}
Updating all regions with the new schema...
1/1 regions updated.
Done.
Took 3.6029 seconds
插入数据:
hbase(main):128:0> enable 't_name'
Took 1.2686 seconds
hbase(main):129:0> put 't_name','1','st1:name','xiaoma'
Took 0.0060 seconds
hbase(main):146:0> put 't_name','1','st1:age','30'
Took 0.0024 seconds
hbase(main):155:0> put 't_name','1','st1:age',100
Took 0.0028 seconds
hbase(main):157:0> put 't_name','1','st1:age',88
Took 0.0022 seconds
同一单元写入3次,查询:
hbase(main):158:0> scan 't_name'
ROW COLUMN+CELL
1 column=st1:age, timestamp=1526971520170, value=88
1 column=st1:name, timestamp=1526971227081, value=xiaoma
1 column=st2:level, timestamp=1526971286607, value=50
1 row(s)
Took 0.0042 seconds
hbase(main):173:0> get 't_name','1'
COLUMN CELL
st1:age timestamp=1526971520170, value=88
st1:name timestamp=1526971227081, value=xiaoma
st2:level timestamp=1526971286607, value=50
1 row(s)
Took 0.0037 seconds
发现查询结果为最后一次写入的值
查看历史版本:
hbase(main):174:0> get 't_name',1,{COLUMN=>'st1:age',VERSIONS=>1}
COLUMN CELL
st1:age timestamp=1526971520170, value=88
1 row(s)
Took 0.0055 seconds
hbase(main):175:0> get 't_name',1,{COLUMN=>'st1:age',VERSIONS=>2}
COLUMN CELL
st1:age timestamp=1526971520170, value=88
st1:age timestamp=1526971419514, value=100
1 row(s)
Took 0.0032 seconds
hbase(main):176:0> get 't_name',1,{COLUMN=>'st1:age',VERSIONS=>3}
COLUMN CELL
st1:age timestamp=1526971520170, value=88
st1:age timestamp=1526971419514, value=100
st1:age timestamp=1526971266685, value=30
1 row(s)
Took 0.0044 seconds
hbase(main):193:0> get 't_name','1',{COLUMN=> 'st1:age',TIMERANGE => [1526971266685,1526971520170] ,VERSIONS => 4}
COLUMN CELL
st1:age timestamp=1526971419514, value=100
st1:age timestamp=1526971266685, value=30
1 row(s)
Took 0.0039 seconds
hbase(main):194:0> get 't_name','1',{COLUMN=>'st1:age',TIMESTAMP=>1526971419514,VERSIONS=>4}
COLUMN CELL
st1:age timestamp=1526971419514, value=100
1 row(s)
Took 0.0028 seconds
hbase表的多版本读写的更多相关文章
- hbase操作(shell 命令,如建表,清空表,增删改查)以及 hbase表存储结构和原理
两篇讲的不错文章 http://www.cnblogs.com/nexiyi/p/hbase_shell.html http://blog.csdn.net/u010967382/article/de ...
- 【Hbase学习之四】Hbase表设计案例
环境 虚拟机:VMware 10 Linux版本:CentOS-6.5-x86_64 客户端:Xshell4 FTP:Xftp4 jdk8 hadoop-2.6.5 hbase-0.98.12.1-h ...
- Hadoop HBase概念学习系列之HBase表的一些设置(强烈推荐好好领悟)(十三)
压缩格式:默认压缩格式是NONE.可选值有GZ.LZO.SNAPPY. 版本数:HBase默认定义为3个版本. 以秒为单位的存活时间TTL:使用对象是行中的列簇,一旦达到过期时间,HBase会删除这些 ...
- HBase表的备份
HBase表备份其实就是先将Table导出,再导入两个过程. 导出过程 //hbase org.apache.hadoop.hbase.mapreduce.Driver export 表名 数据文件位 ...
- pinpoint 修改hbase表TTL值
操作步骤 查找出数据大的hbase表 root@990fb5560f64:/opt/hbase/hbase-# ls CHANGES.txt LICENSE.txt README.txt conf h ...
- 数据分页处理系列之二:HBase表数据分页处理
HBase是Hadoop大数据生态技术圈中的一项关键技术,是一种用于分布式存储大数据的列式数据库,关于HBase更加详细的介绍和技术细节,朋友们可以在网络上进行搜寻,笔者本人在接下来的日子里也会写 ...
- 4 hbase表结构 + hbase集群架构及表存储机制
本博文的主要内容有 .hbase读取数据过程 .HBase表结构 .附带PPT http://hbase.apache.org/ 读写的时候,就需要用hbase了,换句话说,就是读写的时候. ...
- hadoop执行hdfs文件到hbase表插入操作(xjl456852原创)
本例中需要将hdfs上的文本文件,解析后插入到hbase的表中. 本例用到的hadoop版本2.7.2 hbase版本1.2.2 hbase的表如下: create 'ns2:user', 'info ...
- HBase表创建、删除、清空
HBase shell窗口进入 执行命令hbase shell HBase表的创建 # 语法:create <table>, {NAME => <family>, VER ...
随机推荐
- test20190320 全连(fc)
题意 全连(fc) [题目背景] 还记得若干年前那段互相比较<克罗地亚狂想曲>的分数的日子吗? [题目描述] E.Space 喜欢打音游. 但是他技术不好,总是拿不到全连(Full Com ...
- 好使-利用python 下paramiko模块无密码登录
[root@salt-minion02 paramiko]# vim baoleiji4.py # -*- coding:utf-8 -*-import paramikoprivate_key = p ...
- 【python】面试常考数据结构算法
这里整理的都是基础的不能再基础的算法,目的就是进行一个回忆,同时作为剑指offer的一个补充~嘿嘿~ 查找算法二分查找# 实现一个二分查找# 输入:一个顺序list# 输出: 待查找的元素的位置def ...
- 剑指offer-青蛙变态跳台阶-全概率公式
- MySQL--DROP TABLE与MySQL版本
======================================================================== DROP TABLE与MySQL版本 MySQL在5. ...
- stenciljs 学习十 服务器端渲染
stenciljs提供了 ssr 支持,对于express 最简单的就是使用提供的中间件 express 集成 const express = require('express'); const ...
- Sql语句导出数据库表结构及查询表视图储存过程名
--一句Sql把表结构全部查询出来 SELECT 表名 = Case When A.colorder=1 Then D.name Else '' End, 表说明 = Case When A.colo ...
- greasemonkey修改网页url
// ==UserScript== // @name JSHE_ModifyFunction // @namespace jshe // @include http://localhost/* // ...
- Hadoop和云计算
什么是Hadoop? Hadoop代表的就是基于异步存储(HDFS)的并行计算(Map-Reduce). 首先Hdsf/ Kudu他的存储是分布式的存储,hive(map-reduce).impala ...
- Microsoft Dynamics CRM 2011 面向Internet部署 (IFD) CRM 登录出现会话超时的解决办法
一.IFD 登录的时候,过了一段时间,会马上出现“您的会话已过期”,怎么解决这个问题呢,可以通过改变这个时间.具体图如二 Link to Dynamics CRM Wiki Home Page 二.S ...