图论最短路——dijkstra
下午直接开始dijkstra的堆优化,很简单的这里把书上的原理说一下吧,小心和prim最小生成树的堆优化迷,Dijkstra算法基于贪心思想,它只适用于所有边都是非负数的图。当变长z都是非负数的时候,全局最小值不可能在被其他节点更新,故在第一步中选出的节点x必然满足:dis[x]已经是起点到x的最短路径。我们不断选择全局最小值进行标记和扩展,最终可得到起点s到每个节点的最短路径的长度。

这道题spfa的玄学复杂度被卡只能过两组数据,而m,n的这个范围又不是太友好所以考虑用dijkstra加堆优化,这样就可以过了。。。
make_pari照常如此。将大根堆转成小根堆加个符号即可解决。
#include<iostream>
#include<iostream>
#include<cstring>
#include<string>
#include<cstdio>
#include<cmath>
#include<iomanip>
#include<algorithm>
#include<stack>
#include<ctime>
#include<vector>
#include<queue>
#include<map>
using namespace std;
priority_queue<pair<int,int> >q;
const int maxn=;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int lin[maxn],ver[maxn],e[maxn],nex[maxn],len=;
void add(int x,int y,int z)
{
ver[++len]=y;
nex[len]=lin[x];
lin[x]=len;
e[len]=z;
}
int n,m,s;
int dis[maxn];
bool vis[maxn];
void dijkstra()
{
for(int i=;i<=n;i++)
dis[i]=;
memset(vis,,sizeof(vis));
dis[s]=;
q.push(make_pair(,s));
while(q.size()!=)
{
int x=q.top().second;q.pop();
if(vis[x]==)continue;
vis[x]=;
for(int i=lin[x];i;i=nex[i])
{
int tn=ver[i];
if(dis[x]+e[i]<dis[tn])
{
dis[tn]=dis[x]+e[i];
q.push(make_pair(-dis[tn],tn));
}
}
}
}
int main()
{
//freopen("1.in","r",stdin);
n=read();m=read();s=read();
for(int i=;i<=m;i++)
{
int x,y,z;
x=read();y=read();z=read();
add(x,y,z);
}
dijkstra();
for(int i=;i<=n;i++)
printf("%d ",dis[i]);
return ;
}
我本楚狂人,凤歌笑孔丘。
图论最短路——dijkstra的更多相关文章
- 图论--最短路--dijkstra(含路径输出)模板
#include<iostream> #include<stack> #include<queue> #include<cstring> #includ ...
- 图论--最短路-- Dijkstra模板(目前见到的最好用的)
之前的我那个板子,老是卡内存,不知道为什么,我看别人过的那个题都是结构体,我就开始对自己板子做了修改,然后他奶奶的就过了,而且速度也提高了,内存也小了.(自从用了这个板子,隔壁小孩馋哭了)也不知道为啥 ...
- 算法学习笔记(三) 最短路 Dijkstra 和 Floyd 算法
图论中一个经典问题就是求最短路.最为基础和最为经典的算法莫过于 Dijkstra 和 Floyd 算法,一个是贪心算法,一个是动态规划.这也是算法中的两大经典代表.用一个简单图在纸上一步一步演算,也是 ...
- 图论(最短路&最小生成树)
图论 图的定义与概念 图的分类 图,根据点数和边数可分为三种:完全图,稠密图与稀疏图. 完全图,即\(m=n^2\)的图\((m\)为边数,\(n\)为点数\()\).如: 1 1 0 1 2 1 1 ...
- 训练指南 UVALive - 4080(最短路Dijkstra + 边修改 + 最短路树)
layout: post title: 训练指南 UVALive - 4080(最短路Dijkstra + 边修改 + 最短路树) author: "luowentaoaa" ca ...
- 训练指南 UVA - 10917(最短路Dijkstra + 基础DP)
layout: post title: 训练指南 UVA - 10917(最短路Dijkstra + 基础DP) author: "luowentaoaa" catalog: tr ...
- 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板)
layout: post title: 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板) author: "luowentaoaa" catalo ...
- hdu 2544 最短路 Dijkstra
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2544 题目分析:比较简单的最短路算法应用.题目告知起点与终点的位置,以及各路口之间路径到达所需的时间, ...
- 单源最短路dijkstra算法&&优化史
一下午都在学最短路dijkstra算法,总算是优化到了我能达到的水平的最快水准,然后列举一下我的优化历史,顺便总结总结 最朴素算法: 邻接矩阵存边+贪心||dp思想,几乎纯暴力,luoguTLE+ML ...
随机推荐
- /var/spool/postfix/maildrop/ 中有大量的文件
今天查看硬盘剩余的容量,发现‘/’目录下占用了大量的空间:可我在这个目录下面没有放什么东西:仔细查看在/var/spool/postfix/maildrop/ 中发现了大量的文件.怎么会有这么多的文件 ...
- ClamAV病毒软件的安装和使用
ClamAV 杀毒是Linux平台最受欢迎的杀毒软件,ClamAV属于免费开源产品,支持多种平台,如:Linux/Unix.MAC OS X.Windows.OpenVMS.ClamAV是基于病毒扫描 ...
- 关于CreateProcess函数一些经验
TCHAR szCmdLine[]={TEXT("E:\\CPL-server\\其他工具\\restartSrv\\bin\\opensavepath.exe")}; TCHAR ...
- myeclipse环境优化
在项目右键打开Project > Properties > BUILDERS,打开source的tab,选择你的目录,删之~重启myeclipse 以下转载自百度知道 优化一下,下面内容都 ...
- PHP一致性哈希实现。。
<?php /** *@author:xiaojiang 20140222 * 一致性哈希php 实现 */ class MyHash{ //虚拟节点数 private $_virtualCou ...
- Linux下Apache网站目录读写权限的设置
网站目录文件权限的设置对网站的安全至关重要,下面简单介绍网站目录文件权限的基本设定. 我们假设http服务器运行的用户和用户组是www,网站用户为centos,网站根目录是/home/centos/w ...
- iptables 指令语法
iptables 指令 语法: iptables [-t table] command [match] [-j target/jump] -t 参数用来指定规则表,内建的规则表有三个,分别是:nat. ...
- sklearn 中的 Pipeline 机制 和FeatureUnion
一.pipeline的用法 pipeline可以用于把多个estimators级联成一个estimator,这么 做的原因是考虑了数据处理过程中一系列前后相继的固定流程,比如feature selec ...
- MDU某产品OMCI模块代码质量现状分析
说明 本文参考MDU系列某产品OMCI模块现有代码,提取若干实例以说明目前的代码质量,亦可作为甄别不良代码的参考. 本文旨在就事论事,而非否定前人(没有前人的努力也难有后人的进步).希望以史为鉴,不破 ...
- Win8交互UX——键盘交互
设计用户可以通过硬件键盘.屏幕键盘或触摸键盘交互的 Windows 应用商店应用. 本主题介绍键盘交互的设计注意事项.有关实现键盘交互的信息,请参阅响应键盘输入. 键盘交互 键盘输入是 Windows ...