一、流式计算概念

  利用分布式的思想和方法,对海量“流”式数据进行实时处理,源自业务对海量数据,在“时效”的价值上的挖掘诉求,随着大数据场景应用场景的增长,对流式计算的需求愈发增多,流式计算的一般架构图如下:

  

  Flume获取数据-->Kafka传递数据-->Strom计算数据-->Redis保存数据

二、storm介绍

  Apache Storm是一个分布式实时大数据处理系统。Storm设计用于在容错和水平可扩展方法中处理大量数据。它是一个流数据框架,具有最高的摄取率。Storm是无状态的,它通过Apache ZooKeeper管理分布式环境和集群状态。它很简单,您可以并行地对实时数据执行各种操作,成为实时数据分析的领导者。

  通俗的说,Storm用来实时处理数据,特点:低延迟、高可用、分布式、可扩展、数据不丢失。提供简单容易理解的接口,便于开发。

三、storm应用场景和典型案例

  应用场景:

  (1)监控日志分析:从海量日志中分析出特定的数据,并将分析的结果用来辅佐决策,或存入外部存储器。

  (2)用户行为:实时分析用户的行为日志,将最新的用户属性反馈给搜索引擎,能够为用户展现最贴近其当前需求的结果。

  (3)用户画像:收集,维护用户兴趣,并在此基础上向对应受众的用户投放不同的数据和信息。

  典型案例:

  (1)广告投放:为了更加精准投放广告,后台计算引擎需要维护每个用户的兴趣点(理想状态是,你对什么感兴趣,就向你投放哪类广告)。用户兴趣主要基于用户的历史行为、用户的实时查询、用户的实时点击、用户的地理信息而得,其中实时查询、实时点击等用户行为都是实时数据。考虑到系统的实时性,许多厂商使用Storm维护用户兴趣数据,并在此基础上进行受众定向的广告投放

  (2)淘宝:实时分析用户行为,将用户搜索的宝贝反馈给搜索引擎,通过实时数据分析,为用户展现最贴近其当前需求的结果,或是卖家在后台看到自己的店铺有巨大的用户访问量,但实际买单却很少,则可以借助此数据分析进行一定的打折促销活动。

  (3)大型系统监控:收集和分析系统运行过程中的各指标和产生的日志,进行实时分析处理,并作出下一步的决策或告警。

四、storm核心组件

  (1)Nimbus:负责资源分配和任务调度。

  (2)Supervisor:负责接受nimbus分配的任务,启动和停止属于自己管理的worker进程。---通过配置文件设置当前supervisor上启动多少个worker。
  (3)Worker:运行具体处理组件逻辑的进程。Worker运行的任务类型只有两种,一种是Spout任务,一种是Bolt任务。
  (4)Task:worker中每一个spout/bolt的线程称为一个task. 在storm0.8之后,task不再与物理线程对应,不同spout/bolt的task可能会共享一个物理线程,该线程称为executor。

   

五、storm编程模型及Stream Grouping

   下面讲述storm的编程模型,同时也是worker的工作流程

  Topology:Storm中运行的一个实时应用程序的名称。

  Spout:在一个topology中获取源数据流的组件。通常情况下spout会从外部数据源中读取数据,然后转换为topology内部的源数据。
  Bolt:接受数据然后执行处理的组件,用户可以在其中执行自己想要的操作。
  Tuple:一次消息传递的基本单元,理解为一组消息就是一个Tuple,一个Tuple单元会包含一个list对象。
  Stream:表示数据的流向。

  

  可以注意到,一个spout可以向内部的bolt发送数据,也可以向外部的bolt发送,这里即产生一个数据流向的策略问题,Storm里面有7种类型的stream流向策略Stream Grouping

  (1)Shuffle Grouping: 随机分组, 随机派发stream里面的tuple,保证每个bolt接收到的tuple数目大致相同。
  (2)Fields Grouping:按字段分组,比如按userid来分组,具有同样userid的tuple会被分到相同的Bolts里的一个task,而不同的userid则会被分配到不同的bolts里的task。
  (3)All Grouping:广播发送,对于每一个tuple,所有的bolts都会收到。
  (4)Global Grouping:全局分组, 这个tuple被分配到storm中的一个bolt的其中一个task。再具体一点就是分配给id值最低的那个task。
  (5)Non Grouping:不分组,这stream grouping个分组的意思是说stream不关心到底谁会收到它的tuple。目前这种分组和Shuffle grouping是一样的效果, 有一点不同的是storm会把这个bolt放到这个bolt的订阅者同一个线程里面去执行。
  (6)Direct Grouping: 直接分组, 这是一种比较特别的分组方法,用这种分组意味着消息的发送者指定由消息接收者的哪个task处理这个消息。只有被声明为Direct Stream的消息流可以声明这种分组方法。而且这种消息tuple必须使用emitDirect方法来发射。消息处理者可以通过TopologyContext来获取处理它的消息的task的id(OutputCollector.emit方法也会返回task的id)。
  (7)Local or shuffle grouping:如果目标bolt有一个或者多个task在同一个工作进程中,tuple将会被随机发生给这些tasks。否则,和普通的Shuffle Grouping行为一致。

六、storm和Hadoop的核心组件对比

  

storm介绍,核心组件,编程模型的更多相关文章

  1. storm的trident编程模型

    storm的基本概念别人总结的, https://blog.csdn.net/pickinfo/article/details/50488226 编程模型最关键最难就是实现局部聚合的业务逻辑聚合类实现 ...

  2. Storm架构和编程模型总结

    1. 编程模型 DataSource:外部数据源 Spout:接受外部数据源的组件,将外部数据源转化成Storm内部的数据,以Tuple为基本的传输单元下发给Bolt Bolt:接受Spout发送的数 ...

  3. flink原理介绍-数据流编程模型v1.4

    数据流编程模型 抽象级别 程序和数据流 并行数据流 窗口 时间 有状态操作 检查点(checkpoint)容错 批量流处理 下一步 抽象级别 flink针对 流式/批处理 应用提供了不同的抽象级别. ...

  4. Storm集成Kafka编程模型

    原创文章,转载请注明: 转载自http://www.cnblogs.com/tovin/p/3974417.html 本文主要介绍如何在Storm编程实现与Kafka的集成 一.实现模型 数据流程: ...

  5. Storm 第一章 核心组件及编程模型

    1 流式计算 流式计算:数据实时产生.实时传输.实时计算.实时展示 代表技术:Flume实时获取数据.Kafka/metaq实时数据存储.Storm/JStorm实时数据计算.Redis实时结果缓存. ...

  6. CUDA-F-2-1-CUDA编程模型概述2

    Abstract: 本文继续上文介绍CUDA编程模型关于核函数以及错误处理部分 Keywords: CUDA核函数,CUDA错误处理 开篇废话 今天的废话就是人的性格一旦形成,那么就会成为最大的指向标 ...

  7. CUDA-F-2-0-CUDA编程模型概述1

    Abstract: 本文介绍CUDA编程模型的简要结构,包括写一个简单的可执行的CUDA程序,一个正确的CUDA核函数,以及相应的调整设置内存,线程来正确的运行程序. Keywords: CUDA编程 ...

  8. Storm介绍及核心组件和编程模型

    离线计算 离线计算:批量获取数据.批量传输数据.周期性批量计算数据.数据展示 代表技术:Sqoop批量导入数据.HDFS批量存储数据.MapReduce批量计算数据.Hive批量计算数据.azkaba ...

  9. 第1节 storm编程:4、storm环境安装以及storm编程模型介绍

    dataSource:数据源,生产数据的东西 spout:接收数据源过来的数据,然后将数据往下游发送 bolt:数据的处理逻辑单元.可以有很多个,基本上每个bolt都处理一部分工作,然后将数据继续往下 ...

随机推荐

  1. -webkit-transition -moz-transition transition

    -webkit-transition  -moz-transition transition 可以定义动画的变化时间曲线-webkit-transition-timing-function: ease ...

  2. Docker Compose 版本过高(Docker版本不匹配),降低docker-compose版本

    通过docker-compose启动容器,报错: ERROR: The Docker Engine version is less than the minimum required by Compo ...

  3. OC开发_整理笔记——多线程之GCD

    一.进程和线程   二.各种队列! 1.GCD:Grand Central Dispatch 2.串行队列(Serial)      你可以创建任意个数的串行队列,每个队列依次执行添加的任务,一个队列 ...

  4. Elasticsearch 与 Mongodb 数据同步问题

    1.mongo-connector工具 首先安装python环境 wget http://www.python.org/ftp/python/3.0.1/Python-3.0.1.tgz tar -z ...

  5. return 通过文件后缀名得到的函数字符串

    <?php//图片处理工具类class Image{//属性private $thumb_width; //缩略图的宽private $thumb_height;//错误属性public $th ...

  6. hdu 1525 Euclid's Game【 博弈论】

    Two players, Stan and Ollie, play, starting with two natural numbers. Stan, the first player, subtra ...

  7. 视觉slam十四讲开源库安装教程

    目录 前言 1.Eigen线性代数库的安装 2.Sophus李代数库的安装 3.OpenCV计算机视觉库的安装 4.PCL点云库的安装 5.Ceres非线性优化库的安装 6.G2O图优化库的安装 7. ...

  8. CONVERT(varchar(10), getdate(), 120 )中数字参数用法

    这是一个mssql数据库的函数,Convert函数的作用,是进行数据类型的转换.而您所问的这个convert(char(20),openDate,120)则是对日期字段,进行格式化转换成字符格式的函数 ...

  9. Oracle HA 之 Server Pool 实战

    --创建server pool的两种方式:    图形界面:console和dbca       演示-略    命令行工具:srvctl和crsctl --srvctl和crsctl创建server ...

  10. 得到scp命令的完整路径

    奇怪的crontab 遇上shell scp不执行了-CSDN论坛 https://bbs.csdn.net/topics/390593780