Eigen教程(6)
整理下Eigen库的教程,参考:http://eigen.tuxfamily.org/dox/index.html
高级初始化方法
本篇介绍几种高级的矩阵初始化方法,重点介绍逗号初始化和特殊矩阵(单位阵、零阵)。
逗号初始化
Eigen提供了逗号操作符允许我们方便地为矩阵/向量/数组中的元素赋值。顺序是从左上到右下:自左到右,从上至下。对象的尺寸需要事先指定,初始化的参数也应该和要操作的元素数目一致。
Matrix3f m;
m << 1, 2, 3,
4, 5, 6,
7, 8, 9;
std::cout << m;
初始化列表不仅可以是数值也可以是vectors或matrix。
RowVectorXd vec1(3);
vec1 << 1, 2, 3;
std::cout << "vec1 = " << vec1 << std::endl;
RowVectorXd vec2(4);
vec2 << 1, 4, 9, 16;
std::cout << "vec2 = " << vec2 << std::endl;
RowVectorXd joined(7);
joined << vec1, vec2;
std::cout << "joined = " << joined << std::endl;
输出
vec1 = 1 2 3
vec2 = 1 4 9 16
joined = 1 2 3 1 4 9 16
也可以使用块结构。
MatrixXf matA(2, 2);
matA << 1, 2, 3, 4;
MatrixXf matB(4, 4);
matB << matA, matA/10, matA/10, matA;
std::cout << matB << std::endl;
输出
1 2 0.1 0.2
3 4 0.3 0.4
0.1 0.2 1 2
0.3 0.4 3 4
同时逗号初始化方式也可以用来为块表达式赋值。
Matrix3f m;
m.row(0) << 1, 2, 3;
m.block(1,0,2,2) << 4, 5, 7, 8;
m.col(2).tail(2) << 6, 9;
std::cout << m;
1 2 3
4 5 6
7 8 9
特殊的矩阵和向量
零阵:类的静态成员函数Zero(),有三种定义形式。
std::cout << "A fixed-size array:\n";
Array33f a1 = Array33f::Zero();
std::cout << a1 << "\n\n";
std::cout << "A one-dimensional dynamic-size array:\n";
ArrayXf a2 = ArrayXf::Zero(3);
std::cout << a2 << "\n\n";
std::cout << "A two-dimensional dynamic-size array:\n";
ArrayXXf a3 = ArrayXXf::Zero(3, 4);
std::cout << a3 << "\n";
输出
A fixed-size array:
0 0 0
0 0 0
0 0 0
A one-dimensional dynamic-size array:
0
0
0
A two-dimensional dynamic-size array:
0 0 0 0
0 0 0 0
0 0 0 0
类似地,还有常量矩阵:Constant([rows],[cols],value),Random()随机矩阵。
单位阵Identity()方法只能使用与Matrix不使用Array,因为单位阵是个线性代数概念。
LinSpaced(size, low, high)可以从low到high等间距的size长度的序列,适用于vector和一维数组。
ArrayXXf table(10, 4);
table.col(0) = ArrayXf::LinSpaced(10, 0, 90);
table.col(1) = M_PI / 180 * table.col(0);
table.col(2) = table.col(1).sin();
table.col(3) = table.col(1).cos();
std::cout << " Degrees Radians Sine Cosine\n";
std::cout << table << std::endl;
输出
Degrees Radians Sine Cosine
0 0 0 1
10 0.175 0.174 0.985
20 0.349 0.342 0.94
30 0.524 0.5 0.866
40 0.698 0.643 0.766
50 0.873 0.766 0.643
60 1.05 0.866 0.5
70 1.22 0.94 0.342
80 1.4 0.985 0.174
90 1.57 1 -4.37e-08
功能函数
Eigen也提供可同样功能的函数:setZero(), MatrixBase::setIdentity()和 DenseBase::setLinSpaced()。
const int size = 6;
MatrixXd mat1(size, size);
mat1.topLeftCorner(size/2, size/2) = MatrixXd::Zero(size/2, size/2);
mat1.topRightCorner(size/2, size/2) = MatrixXd::Identity(size/2, size/2);
mat1.bottomLeftCorner(size/2, size/2) = MatrixXd::Identity(size/2, size/2);
mat1.bottomRightCorner(size/2, size/2) = MatrixXd::Zero(size/2, size/2);
std::cout << mat1 << std::endl << std::endl;
MatrixXd mat2(size, size);
mat2.topLeftCorner(size/2, size/2).setZero();
mat2.topRightCorner(size/2, size/2).setIdentity();
mat2.bottomLeftCorner(size/2, size/2).setIdentity();
mat2.bottomRightCorner(size/2, size/2).setZero();
std::cout << mat2 << std::endl << std::endl;
MatrixXd mat3(size, size);
mat3 << MatrixXd::Zero(size/2, size/2), MatrixXd::Identity(size/2, size/2),
MatrixXd::Identity(size/2, size/2), MatrixXd::Zero(size/2, size/2);
std::cout << mat3 << std::endl;
输出均为
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
三种赋值(初始化)的方式逗号初始化、特殊阵的静态方法和功能函数setXxx()。
表达式变量
上面的静态方法如 Zero()、Constant()并不是直接返回一个矩阵或数组,实际上它们返回的是是‘expression object’,只是临时被使用/被用于优化。
m = (m + MatrixXd::Constant(3,3,1.2)) * 50;
MatrixXf::Constant(3,3,1.2)构建的是一个3*3的矩阵表达式(临时变量)。
逗号初始化的方式也可以构建这种临时变量,这是为了获取真正的矩阵需要调用finished()函数:
MatrixXf mat = MatrixXf::Random(2, 3);
std::cout << mat << std::endl << std::endl;
mat = (MatrixXf(2,2) << 0, 1, 1, 0).finished() * mat;
std::cout << mat << std::endl;
输出
0.68 0.566 0.823
-0.211 0.597 -0.605
-0.211 0.597 -0.605
0.68 0.566 0.823
Eigen教程(6)的更多相关文章
- Eigen教程(7)
整理下Eigen库的教程,参考:http://eigen.tuxfamily.org/dox/index.html 归约.迭代器和广播 归约 在Eigen中,有些函数可以统计matrix/array的 ...
- Eigen教程(11)
整理下Eigen库的教程,参考:http://eigen.tuxfamily.org/dox/index.html 存储顺序 对于矩阵和二维数组有两种存储方式,列优先和行优先. 假设矩阵: 按行优先存 ...
- Eigen教程(9)
整理下Eigen库的教程,参考:http://eigen.tuxfamily.org/dox/index.html Eigen并没有为matrix提供直接的Reshape和Slicing的API,但是 ...
- Eigen教程(10)
整理下Eigen库的教程,参考:http://eigen.tuxfamily.org/dox/index.html 混淆 在Eigen中,当变量同时出现在左值和右值,赋值操作可能会带来混淆问题.这一篇 ...
- Eigen教程(8)
整理下Eigen库的教程,参考:http://eigen.tuxfamily.org/dox/index.html 原生缓存的接口:Map类 这篇将解释Eigen如何与原生raw C/C++ 数组混合 ...
- Eigen教程(5)
整理下Eigen库的教程,参考:http://eigen.tuxfamily.org/dox/index.html 块操作 块是matrix或array中的矩形子部分. 使用块 函数.block(), ...
- Eigen教程(4)
整理下Eigen库的教程,参考:http://eigen.tuxfamily.org/dox/index.html Array类和元素级操作 为什么使用Array 相对于Matrix提供的线性代数运算 ...
- Eigen教程(3)
整理下Eigen库的教程,参考:http://eigen.tuxfamily.org/dox/index.html 矩阵和向量的运算 提供一些概述和细节:关于矩阵.向量以及标量的运算. 介绍 Eige ...
- Eigen教程(2)
整理下Eigen库的教程,参考:http://eigen.tuxfamily.org/dox/index.html Matrix类 在Eigen,所有的矩阵和向量都是Matrix模板类的对象,Vect ...
随机推荐
- Windows Server 2008中安装IIS7.0
最近由于需求重新部署了一台服务器Windows Server 2008,由于以前都是在Windows Server 2003上操作,因此记录下,供其他同学参考. 下面主要介绍在Windows Se ...
- Html插入Flash.object.embed.swf各个参数值详解介绍[等比例缩放]
http://www.dayku.cn/space-3-do-blog-id-544.html 目也在此列出. Internet Explorer 可识别用于 object 标签的参数:Netscap ...
- Linux下通过关键字模糊查找搜索文件
[背景] 想要在Linux下面,找之前不知道放到哪里的一个tomcat的文件. [折腾过程] 1.最后是参考: linux查找文件命令find – 发芽的石头 – 博客频道 – CSDN.NET 去搜 ...
- CGRectMake 延伸
判断给定的点是否被一个CGRect包含,可以用CGRectContainsPoint函数 BOOLcontains=CGRectContainsPoint(CGRectrect,CGPointpoin ...
- C# 两个时间相减 返回 对应天时分秒
"; //string sdsdsdsds = "1"; , '); //不足2位 就补充0 足2位 就不变 DateTime dts1 = DateTime.Now; ...
- php把采集内容中图片地址下载并替换成本地地址
把字符串中地址全部获取到一个数组我们利用preg_match_all函数 代码如下 复制代码 <?php$str='<p><img border="0" s ...
- 硬盘内部硬件结构和工作原理详解[zz]
一般硬盘正面贴有产品标签,主要包括厂家信息和产品信息,如商标.型号.序列号.生产日期.容量.参数和主从设置方法等.这些信息是正确使用硬盘的基本依据,下面将逐步介绍它们的含义. 硬盘主要由盘体.控制电路 ...
- 微信小程序之顶部固定和底部固定
顶部固定 <view style="position:fixed;top:0;"> ...... </view> 底部固定 <view style=& ...
- ubuntu18.04分辨率
一.使用xrandr命令可以查询当前的显示状态.找出被连接的显示器名称:VGA-1 jack@noi:~$ xrandr Screen : minimum x , current x , maximu ...
- 星云 Android 开发工具箱
Toast 工具类: SmartToastUtils.java import android.content.Context; import android.widget.Toast; /** * T ...