剑指offer-面试题6.重建二叉树
题目:输入某二叉树的前序遍历和中序遍历结果,请重建出该二叉树。假设
输入的前序遍历和中序遍历的结果都不含重复的数字。例如输入前序遍历
序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建出如图
所示的二叉树并输出它的头结点。二叉树的定义如下:
struct BinaryTreeNode
{
int m_nValue;
BinaryTreeNode* m_pLeft;
BinaryTreeNode* m_pRight;
}
/ \
/ / \
\ /
首先要明白一些基本概念:前序遍历,中序遍历,后续遍历
以上图中的二叉树为例:
前序遍历:我的理解是 “根-左-右” 先访问根结点 再访问左子树 最好访问右子树
比如:先访问根结点1,再访问左子节点,左子节点为一颗子树,那么又用根-左-右
的规则,先访问根节点2,再访问左在节点4,再访问右子节点。这样知道所有
节点遍历结束:那么遍历的节点列表是:1,2,4,7,3,5,6,8
中序遍历遵循规则:“左-根-右” 遍历的节点列表是:4,7,2,1,5,3,8,6
后序遍历遵循规则:“左-右-根” 遍历的节点列表是:7,4,2,5,8,6,3,1
那么从另外一个方面来说:任何一个二叉树三种遍历方式的结果是唯一。
反之也就是说这三种遍历结果唯一的确定一颗二叉树。
其实当我们分析会发现实际上在唯一确定一个二叉树的时候并非
完全给出三种方式的遍历结果,实际上我们只需要前序遍历与
中序遍历 又或者中序遍历与后序遍历。注意,如果仅仅是先序
遍历和后序遍历是不能唯一确定一个二叉树的。这点是需要特别注意的
下面我们来分析一下:
如果我们只知道一个二叉树的中序遍历:4,7,2,1,5,3,8,6
与后序遍历:7,4,2,5,8,6,3,1
现在我们开分析一下能不能通过这两中遍历结果推出先序
遍历结果:1,2,4,7,3,5,6,8
我们知道后序遍历可知,遍历列表最后一个元素为二叉树的根结点
可知该最后一个元素为1,那么跟结点为1.
在中序遍历结果中找到根节点所在的位置,那么该位置前面的即为
二叉树的左子树:4,7,2 该位置后面的为二叉树的右子树:5,3,8,6
那么我们可以通过找到的左右子树确定后序遍历的左右子树遍历结果:
7,4,2和5,8,6,3
现在我们又分别针对每个子树重复上述步骤:显然前序遍历结果为:1,2,4,7,3,5,8,6
很显然前序与中序结果退出后序遍历结果的步骤是一样一样的。
那么问题来了,为什么不能通道前序和后序遍历结果推出中序遍历结果呢?
因为我们不能通过前序和中序遍历确定遍历结果中关于根节点的左右子树。
也就是说前序和后序遍历结果重建的二叉树不一定是唯一的。
好了有了前面的分析我们不难通过递归的方式解决这道题,
剑指Offer书上是通过前序和中序遍历推出后序遍历()
代码如下:
#include <iostream>
using namespace std; struct BinaryTreeNode
{
int m_nValue;
BinaryTreeNode* m_pLeft;
BinaryTreeNode* m_pRight;
}; BinaryTreeNode* ConstructCore(int* startPreorder,int* endPreorder,int*startInorder,int* endInorder)
{
int rootValue = startPreorder[];
struct BinaryTreeNode* root = (struct BinaryTreeNode*)malloc(sizeof(struct BinaryTreeNode));
root->m_nValue=rootValue;
root->m_pLeft=NULL;
root->m_pRight=NULL; if(startPreorder == endPreorder)
{
if(startInorder == endInorder&& *startPreorder==*startInorder)
return root;
else
throw exception("Invalid Input.");
} int* rootInorder=startInorder;
while(rootInorder<=endInorder&&*rootInorder!=rootValue)
++rootInorder; if(rootInorder==endInorder&&*rootInorder!=rootValue)
throw exception("Invalid Input."); int leftLength = rootInorder-startInorder;
int* LeftPreorderEnd=startPreorder+leftLength;
if(leftLength>)
{
root->m_pLeft=ConstructCore(startPreorder+,LeftPreorderEnd,startInorder,rootInorder-);
} if(leftLength<endPreorder-startPreorder)
{
root->m_pRight=ConstructCore(LeftPreorderEnd+,endPreorder,rootInorder+,endInorder);
} return root;
} BinaryTreeNode* Construct(int* preorder,int* inorder,int length)
{
if(preorder==NULL||inorder==NULL||length<=)
return NULL;
return ConstructCore(preorder,preorder+length-,inorder,inorder+length-);
} void AfterOrderPrint(struct BinaryTreeNode* root)
{
if(root)
{
AfterOrderPrint(root->m_pLeft);
AfterOrderPrint(root->m_pRight);
cout<<root->m_nValue<<" ";
}
} int main()
{
BinaryTreeNode *Root;
int preList[]={,,,,,,,};
int inList[]={,,,,,,,};
Root=Construct(preList,inList,);
AfterOrderPrint(Root);
cout<<endl;
return ;
}
截图:

对的吧
接下来我们模仿剑指offer书中的上述代码,通过前后序遍历和中序遍历
推出前序遍历进而重建这颗二叉树。
#include <iostream>
using namespace std; struct BinaryTreeNode
{
int m_nValue;
BinaryTreeNode* m_pLeft;
BinaryTreeNode* m_pRight;
}; BinaryTreeNode* ConstructCore(int* startAfterorder,int* endAfterorder,int*startInorder,int* endInorder)
{
int rootValue = endAfterorder[];
struct BinaryTreeNode* root = (struct BinaryTreeNode*)malloc(sizeof(struct BinaryTreeNode));
root->m_nValue=rootValue;
root->m_pLeft=NULL;
root->m_pRight=NULL; int* rootInorder=startInorder;
while(rootInorder<=endInorder&&*rootInorder!=rootValue)
++rootInorder; int leftLength = rootInorder-startInorder;
int* LeftAfterorderEnd=startAfterorder+leftLength;
if(leftLength>)
{
root->m_pLeft=ConstructCore(startAfterorder,LeftAfterorderEnd-,startInorder,rootInorder-);
} if(leftLength<endAfterorder-startAfterorder)
{
root->m_pRight=ConstructCore(LeftAfterorderEnd,endAfterorder-,rootInorder+,endInorder);
} return root;
} BinaryTreeNode* Construct(int* Afterorder,int* inorder,int length)
{
if(Afterorder==NULL||inorder==NULL||length<=)
return NULL;
return ConstructCore(Afterorder,Afterorder+length-,inorder,inorder+length-);
} void PreOrderPrint(struct BinaryTreeNode* root)
{
if(root)
{
cout<<root->m_nValue<<" ";
PreOrderPrint(root->m_pLeft);
PreOrderPrint(root->m_pRight);
}
} int main()
{
BinaryTreeNode *Root;
int AfterList[]={,,,,,,,};
int inList[]={,,,,,,,};
Root=Construct(AfterList,inList,);
PreOrderPrint(Root);
cout<<endl;
return ;
}

咦 正确了哦
两点说明:
1.使用前序中序以及中序后序重建一个二叉树,这颗二叉树中的节点元素值必须完全不相等。
为什么呢,假设除开根节点外还有另外一个节点值为1 那么在前序或者后序遍历中怎么能
确定这个节点左子树和右子树的分界点呢,既然不能确定,那么显然不能递归重建一个唯一的
二叉树
2.注意关于前序中序重建二叉树时应该注意前序遍历与中序遍历的一致性,否则无法重建这可二叉树。
剑指offer-面试题6.重建二叉树的更多相关文章
- 剑指offer面试题6 重建二叉树(c)
- 剑指offer面试题6 重建二叉树(java)
注:(1)java中树的构建 (2)构建子树时可以直接利用Arrays.copyOfRange(preorder, from, to),这个方法是左开右闭的 package com.xsf.SordF ...
- 剑指Offer:面试题6——重建二叉树(java实现)
问题描述:输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不包含重复的数字. 例如: 输入:前序{1,2,4,7,3,5,6,8},中序{4,7,2,1 ...
- C++版 - 剑指Offer 面试题39:二叉树的深度(高度)(二叉树深度优先遍历dfs的应用) 题解
剑指Offer 面试题39:二叉树的深度(高度) 题目:输入一棵二叉树的根结点,求该树的深度.从根结点到叶结点依次经过的结点(含根.叶结点)形成树的一条路径,最长路径的长度为树的深度.例如:输入二叉树 ...
- 剑指Offer - 九度1385 - 重建二叉树
剑指Offer - 九度1385 - 重建二叉树2013-11-23 23:53 题目描述: 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的 ...
- 剑指offer_面试题6_重建二叉树(分解步骤,逐个击破)
题目:输入某二叉树的前序遍历和中序遍历的结果.请重建出该二叉树.如果输入的前序遍历和中序遍历的结果中都不含反复的数字. 比如:输入前序遍历 {1,2,4,7,3,5,6,8} 和中序遍历序列 {4,7 ...
- 剑指offer第二版-7.重建二叉树
描述:输入某二叉树的前序遍历和中序遍历结果,重建该二叉树.假设前序遍历或中序遍历的结果中无重复的数字. 思路:前序遍历的第一个元素为根节点的值,据此将中序遍历数组拆分为左子树+root+右子树,前序遍 ...
- 剑指offer【04】- 重建二叉树(java)
题目:重建二叉树 考点:树 题目描述:输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字.例如输入前序遍历序列{1,2,4,7,3,5,6, ...
- 剑指offer(4)重建二叉树
题目描述 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的前序遍历和中序遍历的结果中都不含重复的数字.例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7, ...
- 剑指offer——面试题8:二叉树的下一个节点
// 面试题8:二叉树的下一个结点 // 题目:给定一棵二叉树和其中的一个结点,如何找出中序遍历顺序的下一个结点? // 树中的结点除了有两个分别指向左右子结点的指针以外,还有一个指向父结点的指针. ...
随机推荐
- HDOJ-1016 Prime Ring Problem(DFS)
http://acm.hdu.edu.cn/showproblem.php?pid=1016 题意:输入n,代表有一个包含n个节点的环,在环中的节点中填入1,2...n-1,n,要求填入的数与左边的数 ...
- pyqt最小化学习
# -*- coding: cp936 -*- #!/usr/bin/env python # -*- coding:utf-8 -*- from PyQt4 import QtCore, QtGui ...
- zXing使用小结
在android上二维码.条形码扫描,google官方为我们提供了zXing,几乎android涉及到扫描的都是用这个开源项目实现的,也有在android上使用zBar的,和其他用过的交流得知zBar ...
- Eclipse中使用正则屏蔽Logcat中的某些Tag
在使用Eclipse进行Android真机调试的时候经常会出现满屏幕的LogCat,即使设定了根据程序分类也不行 经常会有 Dalvikvm InputMethod这样的Tag出现 给自己的应用设定T ...
- Android窗口管理服务WindowManagerService显示窗口动画的原理分析
文章转载至CSDN社区罗升阳的安卓之旅,原文地址:http://blog.csdn.net/luoshengyang/article/details/8611754 在前一文中,我们分析了Activi ...
- Oracle字符集查看
Oracle字符集是一个字节数据的解释的符号集合,有大小之分,有相互的包容关系.ORACLE 支持国家语言的体系结构允许你使用本地化语言来存储,处理,检索数据.它使数据库工具,错误消息,排序次序,日期 ...
- Ubantu 命令
进入窗口删除文件(所有文件都可以删除) gksudo nautilus 输入法问题 ibus-daemon -drx
- unity 打包 windows 运行 紫色 粉红色
unity下建立了个小demo,在editer里面运行正常.如下 但是一旦打包发布到android或者windows下就出现了类似这种情况 这种一般是由于材质贴图的缺失,一般来说选定的默认贴图的话会打 ...
- jquery动态删除、复制、包裹DOM节点
1.remove()方法 移除满足条件的元素 <html> <head> <meta http-equiv="Content-Type" conten ...
- 深入C语言内存区域分配(进程的各个段)详解(转)
原文地址:http://www.jb51.net/article/39696.htm 一般情况下,一个可执行二进制程序(更确切的说,在Linux操作系统下为一个进程单元,在UC/OSII中被称为任务) ...