用01分数规划 + prime + 二分 竟然2950MS惊险的过了QAQ

前提是在TLE了好几次下过的 = =

题目意思:
有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水,只要两个村庄之间有一条路即可,建造水管距离为坐标之间的欧几里德距离,费用为海拔之差,现在要求方案使得费用与距离的比值最小,很显然,这个题目是要求一棵最优比率生成树。

解题思路:

对答案进行二分,当把代进去的答案拿来算最小生成树的时候,一旦总路径长度为0,就是需要的答案。

0-1规划是啥?
 
概念
有带权图G, 对于图中每条边e[i], 都有benifit[i](收入)和cost[i](花费), 我们要求的是一棵生成树T, 它使得 ∑(benifit[i]) / ∑(cost[i]), i∈T 最大(或最小).这显然是一个具有现实意义的问题.
解法之一 0-1分数规划
设x[i]等于1或0, 表示边e[i]是否属于生成树.
则我们所求的比率 r = ∑(benifit[i] * x[i]) / ∑(cost[i] * x[i]), 0≤i<m .
为了使 r 最大, 设计一个子问题---> 让 z = ∑(benifit[i] * x[i]) - l * ∑(cost[i] * x[i]) = ∑(d[i] * x[i]) 最大 (d[i] = benifit[i] - l * cost[i]) , 并记为z(l). 我们可以兴高采烈地把z(l)看做以d为边权的最大生成树的总权值.

然后明确两个性质:
 1. z单调递减
  证明: 因为cost为正数, 所以z随l的减小而增大.
 2. z( max(r) ) = 0
  证明: 若z( max(r) ) < 0, ∑(benifit[i] * x[i]) - max(r) * ∑(cost[i] * x[i]) < 0, 可化为 max(r) < max(r). 矛盾;
   若z( max(r) ) >= 0, 根据性质1, 当z = 0 时r最大.

贴代码:

 //#pragma comment(linker, "/STACK:16777216") //for c++ Compiler
#include <stdio.h>
#include <iostream>
#include <climits>
#include <cstring>
#include <cmath>
#include <stack>
#include <vector>
#include <algorithm>
#define ll long long
using namespace std; const int INF = 0x3f3f3f3f;
const int MAXN = ;
struct node{
double x,y,h;
}dot[MAXN]; double map[MAXN][MAXN];
int n;
double dis(double x1,double y1,double x2,double y2){
return sqrt( (x2-x1)*(x2-x1)+(y2-y1)*(y2-y1) );
} void creat(int n,double l){
for(int i=;i<=n;i++) for(int j=;j<=n;j++)
map[i][j]=fabs(dot[i].h-dot[j].h) - l * dis(dot[i].x,dot[i].y,dot[j].x,dot[j].y);
} double prim(){
bool vis[MAXN];
memset(vis, , sizeof(vis));
double dis[MAXN];
double ans = ;
int i,j;
vis[] = true;
for(i = ; i <= n; ++i)
dis[i] = map[][i];
for(i = ; i < n; ++i){
int temp = INF, flag;
for(j = ; j <= n; ++j){
if(!vis[j] && dis[j] <= temp){
temp = dis[j];
flag = j;
}
}
vis[flag] = true;
ans += dis[flag];
for(j = ; j <= n; ++j){
if(!vis[j] && map[flag][j] < dis[j])
dis[j] = map[flag][j];
}
}
return ans;
} int main(){
int i,j;
double res,front,rear, mid;
while(EOF != scanf("%d",&n)){
if(n==) break;
for(i=;i<=n;i++)
scanf("%lf%lf%lf",&dot[i].x,&dot[i].y,&dot[i].h);
front = ;
rear = 100.0;//doubt
while(front <= rear){
mid = (front + rear) / ;
creat(n,mid);
res = prim();
if(fabs(res) < 1e-)
break;
else if(res > 1e-)
front = mid;
else
rear = mid;
}
printf("%.3f\n",mid);
}
return ;
}

POJ2728 最小比率生成树/0-1分数规划/二分/迭代(迭代不会)的更多相关文章

  1. POJ.2728.Desert King(最优比率生成树 Prim 01分数规划 二分/Dinkelbach迭代)

    题目链接 \(Description\) 将n个村庄连成一棵树,村之间的距离为两村的欧几里得距离,村之间的花费为海拔z的差,求花费和与长度和的最小比值 \(Solution\) 二分,假设mid为可行 ...

  2. Bzoj1486/洛谷P3199 最小圈(0/1分数规划+spfa)/(动态规划+结论)

    题面 Bzoj 洛谷 题解(0/1分数规划+spfa) 考虑\(0/1\)分数规划,设当前枚举到的答案为\(ans\) 则我们要使(其中\(\forall b_i=1\)) \[ \frac{\sum ...

  3. poj2728 最小比率生成树——01分数规划

    题目大意: 有n个村庄,村庄在不同坐标和海拔,现在要对所有村庄供水, 只要两个村庄之间有一条路即可,建造水管距离为坐标之间的欧几里德距离,费用为海拔之差, 现在要求方案使得费用与距离的比值最小,很显然 ...

  4. POJ 2728 Desert King(最优比率生成树, 01分数规划)

    题意: 给定n个村子的坐标(x,y)和高度z, 求出修n-1条路连通所有村子, 并且让 修路花费/修路长度 最少的值 两个村子修一条路, 修路花费 = abs(高度差), 修路长度 = 欧氏距离 分析 ...

  5. poj2728 Desert King【最优比率生成树】【Prim】【0/1分数规划】

    含[最小生成树Prim]模板. Prim复杂度为$O(n^2),适用于稠密图,特别是完全图的最小生成树的求解.   Desert King Time Limit: 3000MS   Memory Li ...

  6. POJ2728 Desert King (最小生成树、0/1分数规划)

    显然的0/1分数规划问题,用二分来解决,检验mid,就用prim算法求最小生成树,看总边权是否大等于0即可验证. 1 #include<bits/stdc++.h> 2 using nam ...

  7. poj 2976 Dropping tests 0/1分数规划

    0/1分数规划问题,用二分解决!! 代码如下: #include<iostream> #include<stdio.h> #include<algorithm> # ...

  8. bzoj 3597: [Scoi2014]方伯伯运椰子 0/1分数规划

    3597: [Scoi2014]方伯伯运椰子 Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 144  Solved: 78[Submit][Status ...

  9. LOJ 3089 「BJOI2019」奥术神杖——AC自动机DP+0/1分数规划

    题目:https://loj.ac/problem/3089 没想到把根号之类的求对数变成算数平均值.写了个只能得15分的暴力. #include<cstdio> #include< ...

随机推荐

  1. [转]swift 学习资源 大集合

    今天看到了一个swift的学习网站,里面收集了很多学习资源 [转自http://blog.csdn.net/sqc3375177/article/details/29206779] Swift 介绍 ...

  2. 关于LD_DEBUG (转载)

    引用 LD_DEBUGThe dynamic library loader used in linux (part of glibc) has some neat tricks. One of the ...

  3. Flex 百度地图API使用

    今天想看一下Flex中关于地图方面的使用,刚开始看了google map api, 感觉用起来挺麻烦,关键是英文不好,文档读起来费劲,还有密钥神马的~ 那我就试验一下百度地图的接口,文档是中文的. 首 ...

  4. 编译最新ffmpeg2.0.1到iOS设备

    www.mingjianhua.com 转载请注明出处. 上一篇文章讲了用NDKr9编译最新ffmpeg2.0.1到android平台,一般做了Android平台的编解码就免不了要做iOS,这次一起把 ...

  5. android基础篇------------java基础(12)(多线程操作)

    <一>基本概念理解 1.什么是进程? 进程就是在某种程度上相互隔离,独立运行的程序.一般来说,系统都是支持多进程操作的,这所谓的多进程就是让系统好像同时运行多个程序. 2.什么是线程呢? ...

  6. 各浏览器对 window.open() 的窗口特征 sFeatures 参数支持程度存在差异

    标准参考 无. 问题描述 使用 window.open 方法可以弹出一个新窗口,其中 open 方法的 sFeatures 参数选项在各浏览器中支持程度不一,这有可能导致同样的代码使各浏览器中弹出窗口 ...

  7. Java之SPI机制

    之前开阿里的HSF框架,里面用到了Java的SPI机制,今天闲暇的时候去了解了一下,通过写博客来记录一下 SPI的全名为Service Provider Interface,我对于该机制的理解是为接口 ...

  8. js方法中的this

    比如有个function: function ServiceMy(services) { //存放this,用于调试用 var tmp_this = this; this.services = []; ...

  9. JavaScript基础知识----document对象

    对象属性document.title                 //设置文档标题等价于HTML的<title>标签document.bgColor               //设 ...

  10. Objective-C 链式编程思想

    链式编程思想 链式编程是什么 链式编程就是将调用多个方法用点语法连接起来,让代码更加简洁和可读性更高刚开始接触链式编程是Masonry,用起来真的非常爽 1 make.left.right.top.e ...