今年暑假不AC

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 28170    Accepted Submission(s): 14937

Problem Description
“今年暑假不AC?”

“是的。”

“那你干什么呢?”

“看世界杯呀,笨蛋!”

“@#$%^&*%...”



确实如此,世界杯来了,球迷的节日也来了,估计很多ACMer也会抛开电脑,奔向电视了。

作为球迷,一定想看尽量多的完整的比赛,当然,作为新时代的好青年,你一定还会看一些其它的节目,比如新闻联播(永远不要忘记关心国家大事)、非常6+7、超级女生,以及王小丫的《开心辞典》等等,假设你已经知道了所有你喜欢看的电视节目的转播时间表,你会合理安排吗?(目标是能看尽量多的完整节目)
 
Input
输入数据包含多个测试实例,每个测试实例的第一行只有一个整数n(n<=100),表示你喜欢看的节目的总数,然后是n行数据,每行包括两个数据Ti_s,Ti_e (1<=i<=n),分别表示第i个节目的开始和结束时间,为了简化问题,每个时间都用一个正整数表示。n=0表示输入结束,不做处理。
 
Output
对于每个测试实例,输出能完整看到的电视节目的个数,每个测试实例的输出占一行。
 
Sample Input
12
1 3
3 4
0 7
3 8
15 19
15 20
10 15
8 18
6 12
5 10
4 14
2 9
0
 
Sample Output
5
 
Author
lcy
 
Source
 
Recommend
lcy   |   We have carefully selected several similar problems for you:  1050 1051 1789 1257 1045 
 

动归:

  F[i] 前i个小时的最大观看数量
  F[i]=MAX(F[i-1],F[A[k].s])   (当 A[k].e==i时)

不过动归这题有点坑。。。不一定是24小时  可能是100小时。。等等 完全等同于线段覆盖这题了

代码附上
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
typedef struct node
{
int s;
int t;
}node;
node a[10001];
int F[25];
int cmp(const void *i,const void *j)
{ node *ii=(node *)i,*jj=(node *)j;
if(ii->t!=jj->t)
return ii->t-jj->t;
else
return ii->s-jj->s;
}
int max(int a,int b)
{
if(a>b) return a;
else return b;
}
int main()
{
freopen("a.in","r",stdin);
freopen("a.out","w",stdout);
int n,i,j;
while(scanf("%d",&n)!=EOF&&n!=0)
{
memset(F,0,sizeof(F));
memset(a,0,sizeof(a));
for(i=1;i<=n;i++)
scanf("%d%d",&a[i].s,&a[i].t);
qsort(a+1,n,sizeof(a[1]),cmp);
j=1;
for(i=0;i<=100;i++)
{
if(i!=0)
F[i]=F[i-1];
for(;j<=n;j++)
{
if(a[j].t<i) {continue;}
if(a[j].t>i) {break;}
F[i]=max(F[i],F[a[j].s]+1);
}
}
printf("%d\n",F[100]);
}
return 0;
}

贪心证明(利用数学归纳法):

当i=1时


这两种情况 都显然选择 下面这种右端点靠后的情况  所以我们可以觉得贪心的策略是否是选择右端点小的
i=1时 此时为全局最优解
假设 i=k时 依旧为全局最优解
i=k+1时

因为这两个线段都不能与前面有交集 所以没有后效性  此时类似i=1 一样保持这样的贪心策略使得保持全局最优解

所以得证 以右端点排序 不断选择合理的右端点小的线段

代码如下
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
typedef struct node
{
int s;
int t;
}node;
node a[10001];
int ans=0;
int cmp(const void *i,const void *j)
{ node *ii=(node *)i,*jj=(node *)j;
if(ii->t!=jj->t)
return ii->t-jj->t;
else
return ii->s-jj->s;
}
int max(int a,int b)
{
if(a>b) return a;
else return b;
}
int main()
{
freopen("a.in","r",stdin);
freopen("b.out","w",stdout);
int n,i,j,end;
while(scanf("%d",&n)!=EOF&&n!=0)
{
ans=0;end=0;
memset(a,0,sizeof(a));
for(i=1;i<=n;i++)
scanf("%d%d",&a[i].s,&a[i].t);
qsort(a+1,n,sizeof(a[1]),cmp);
for(i=1;i<=n;i++)
{
if(a[i].s>=end)
ans++,end=a[i].t;
}
printf("%d\n",ans);
}
return 0;
}

HDU2037 贪心 动归均可+证明的更多相关文章

  1. CF2B The least round way(贪心+动规)

    题目 CF2B The least round way 做法 后面\(0\)的个数,\(2\)和\(5\)是\(10\)分解质因数 则把方格中的每个数分解成\(2\)和\(5\),对\(2\)和\(5 ...

  2. [HDU2037]贪心入门

    今年暑假不AC Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  3. HDU6438 Buy and Resell 解题报告(一个有趣的贪心问题的严格证明)

    写在前面 此题是一个很容易想到的贪心题目,但是正确性的证明是非常复杂的.然而,目前网上所有题解并未给出本题贪心算法的任何正确性证明,全部仅停留在描述出一个贪心算法.本着对算法与计算机科学的热爱(逃), ...

  4. The - Modcrab——使用贪心策略

    一.题目信息 The - Modcrab 简单翻译一下:Vova有生命值h1,每次攻击值为a1,每瓶药水恢复生命值c1;Modcrab有生命值h2,每次攻击值为a2.在每个关卡开始,Vova有两种选择 ...

  5. noip知识点总结之--贪心

    一.什么是贪心 贪心算法嘛... 就是在对某个问题求解时,总是做出在当前看来是最好的选择 In other wors,并不是从整体最优上加以考虑,而是在获得某种意义上的局部最优解 二.贪心算法的适用前 ...

  6. 最大公约数(gcd):Euclid算法证明

    1个常识: 如果 a≥b 并且 b≤a,那么 a=b. 2个前提: 1)只在非负整数范围内讨论两个数 m 和 n 的最大公约数,即 m, n ∈ N. 2)0可以被任何数整除,但是0不能整除任何数,即 ...

  7. 剑指Offer——贪心算法

    剑指Offer--贪心算法 一.基本概念 所谓贪心算法是指,在对问题求解时,总是做出在当前看来是最好的选择.也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解.虽然贪心算法不能对 ...

  8. 【贪心算法】POJ-3040 局部最优到全局最优

    一.题目 Description As a reward for record milk production, Farmer John has decided to start paying Bes ...

  9. CodeForcesdiv1:995C - Leaving the Bar(随机算法+贪心)

    For a vector →v=(x,y)v→=(x,y), define |v|=√x2+y2|v|=x2+y2. Allen had a bit too much to drink at the ...

随机推荐

  1. .net 4.5 新特性 async await 一般处理程序实例

    using System; using System.Collections.Generic; using System.Linq; using System.Threading; using Sys ...

  2. 【算法】插入排序 insertion_sort

    准备写个<STL 源代码剖析>的读书笔记,开个专栏.名为<STL 的实现>,将源代码整理一遍.非常喜欢侯捷先生写在封底的八个字:天下大事.必作于细.他在书中写到:"我 ...

  3. Android项目svn代码管理问题

    用svn控制版本,svn本身是不会识别哪些该传,哪些不该传,这就导致有些关于路径的东西(比如拓展jar的路径)也被上传了,而当别人下载后,那个路径对于这个人可能完全不存在,项目编译就会出问题.用ecl ...

  4. EffectiveC#16--垃圾最小化

    1.申请和释放一个基于堆内存的对象要花上更多的处理器时间. 所以当一个引用类型的局部变量在常规的函数调用中使用的非常频繁时应该把它提升为对象的成员(方法一) 2.当你把一个实现了IDisposable ...

  5. C#几种截取字符串的方法小结 (摘抄)

    1.根据单个分隔字符用split截取 例如 string st="GT123_1"; string[] sArray=st.split("_"); 即可得到sA ...

  6. Ajax请求安全性讨论 - Eric.Chen(转)

    Ajax请求安全性讨论 - Eric.Chen 时间 2013-07-23 20:44:00  博客园-原创精华区 原文  http://www.cnblogs.com/lc-chenlong/p/3 ...

  7. python os模块文件相关

    使用前 import os导入模块   os模块: os.sep     可以取代操作系统特定的路径分割符 os.linesep  字符串给出当前平台使用的行终止符.例如,Windows使用'\r\n ...

  8. System.Threading.Timer的使用技巧

    转自:http://www.360doc.com/content/11/0812/11/1039473_139824496.shtml# System.Threading.Timer timer = ...

  9. size_t和size_type类型

    size_t一般用来表示一种计数,比如有多少东西被拷贝等.例如:sizeof操作符的结果类型是size_t,该类型保证能容纳实现所建立的最大对象的字节大小. 它的意义大致是“适于计量内存中可容纳的数据 ...

  10. 有向强连通分支Tarjan算法

    本文转载自:http://blog.csdn.net/xinghongduo/article/details/6195337 说到以Tarjan命名的算法,我们经常提到的有3个,其中就包括本文所介绍的 ...