陈丹琦分治~~~其实一些数据小的时候可以用二维或者多维树状数组做的,而数据大的时候就无力的题目,都可以用陈丹琦分治解决。

题目:由3钟类型操作:
1)D L R(1 <= L <= R <= 1000000000) 增加一条线段[L,R]
2)C i (1-base) 删除第i条增加的线段,保证每条插入线段最多插入一次,且这次删除操作一定合法
3) Q L R(1 <= L <= R <= 1000000000) 查询目前存在的线段中有多少条线段完全包含[L,R]这个线段,线段X被线段Y完全包含即LY <= LX

<= RX <= RY)
给出N,接下来N行,每行是3种类型之一

由于 L R 比较大,直接是不行的,于是我们可以利用CDQ分治把二维变成一维,然后离散化。树状数组查询。

对于询问 L R 只需要 知道 小于等于L 且大于等于R的有多少个就可以了。这里我是把线段左端点进行CDQ分治,然后每次查询大于R数目。

 #include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int maxn = 1e5+;
struct Node
{
int idx,l,r,delt;
int kind;
bool operator < (const Node &rhs)const
{
return l < rhs.l ;
}
}node[maxn];
int ans[maxn],del[maxn];
//-------------BIT--------- //此处树状数组反向写的,用于查询 大于等于x的数有多少个
inline int lowbit (int x)
{
return x & -x;
}
int arr[maxn],MAX;
void add (int x,int d)
{
while (x)
{
arr[x] += d;
x -= lowbit(x);
}
}
int sum(int x)
{
int ans = ;
while (x <= MAX)
{
ans += arr[x];
x += lowbit(x);
}
return ans;
}
//--------------离散化-----
int vec[maxn],vec_idx;
int hash_(int x)
{
return lower_bound(vec,vec+vec_idx,x) - vec + ;
}
//------------------------
void CDQ(int l,int r)
{
if (l == r)
return;
int mid = (l + r) >> ;
CDQ(l,mid);
CDQ(mid+,r);
int j = l;
for (int i = mid+; i <= r; i++)
{
if (node[i].kind == )
{
for ( ;j <= mid && node[j].l <= node[i].l; j++)
{
if (node[j].kind == )
{
add(hash_(node[j].r),node[j].delt);
}
}
ans[node[i].idx] += sum(hash_(node[i].r));
}
}
for (int i = l; i < j; i++)
if ( node[i].kind == )
add(hash_(node[i].r),-node[i].delt);
inplace_merge(node+l,node+mid+,node+r+);
}
int vis[maxn];
int main(void)
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
#endif
int n;
while (~scanf ("%d",&n))
{
int cnt = ;
vec_idx = ;
memset(arr,,sizeof(arr));
memset(ans,,sizeof(ans));
memset(vis,,sizeof(vis));
vector<int>vv;
for (int i = ; i <= n; i++)
{
char op[];
scanf ("%s",op);
if (op[] == 'D')
{
scanf ("%d%d",&node[i].l,&node[i].r);
node[i].kind = ;
node[i].idx = i;
node[i].delt = ;
vec[vec_idx++] = node[i].r;
vv.push_back(i);
}
if (op[] == 'Q')
{
scanf ("%d%d",&node[i].l,&node[i].r);
node[i].kind = ;
node[i].idx = i;
vec[vec_idx++] = node[i].r;
vis[i] = ;
}
if (op[] == 'C')
{
int tmp;
scanf ("%d",&tmp);
node[i].kind = ;
node[i].l = node[vv[tmp-]].l;
node[i].r = node[vv[tmp-]].r;
node[i].delt = -; // 对于删除的边类型与增加的相同但是,操作的时候是-1
node[i].idx = i;
}
}
sort(vec,vec+vec_idx);
vec_idx = unique(vec,vec+vec_idx) - vec;
MAX = vec_idx + ;
CDQ(,n);
for (int i = ; i <= n; i++)
{
if (vis[i])
printf("%d\n",ans[i]);
}
}
return ;
}

Acdream1157---Segments (CDQ分治)的更多相关文章

  1. ACdream 1157 Segments CDQ分治

    题目链接:https://vjudge.net/problem/ACdream-1157 题意: Problem Description 由3钟类型操作: 1)D L R(1 <= L < ...

  2. 【ACdream】1157 Segments cdq分治

    Segments   Problem Description 由3钟类型操作:1)D L R(1 <= L <= R <= 1000000000) 增加一条线段[L,R]2)C i ...

  3. ACdream1157 Segments(CDQ分治 + 线段树)

    题目这么说的: 进行如下3种类型操作:1)D L R(1 <= L <= R <= 1000000000) 增加一条线段[L,R]2)C i (1-base) 删除第i条增加的线段, ...

  4. ACdream 1157 Segments(CDQ分治)

    题目链接:http://acdream.info/problem?pid=1157 Problem Description 由3钟类型操作:1)D L R(1 <= L <= R < ...

  5. ACdream 1157 (cdq分治)

    题目链接 Segments Time Limit: 4000/2000MS (Java/Others)Memory Limit: 20000/10000KB (Java/Others) Problem ...

  6. 【教程】简易CDQ分治教程&学习笔记

    前言 辣鸡蒟蒻__stdcall终于会CDQ分治啦!       CDQ分治是我们处理各类问题的重要武器.它的优势在于可以顶替复杂的高级数据结构,而且常数比较小:缺点在于必须离线操作. CDQ分治的基 ...

  7. BZOJ 2683 简单题 ——CDQ分治

    [题目分析] 感觉CDQ分治和整体二分有着很本质的区别. 为什么还有许多人把他们放在一起,也许是因为代码很像吧. CDQ分治最重要的是加入了时间对答案的影响,x,y,t三个条件. 排序解决了x ,分治 ...

  8. HDU5618 & CDQ分治

    Description: 三维数点 Solution: 第一道cdq分治...感觉还是很显然的虽然题目不能再傻逼了... Code: /*=============================== ...

  9. 初识CDQ分治

    [BZOJ 1176:单点修改,查询子矩阵和]: 1176: [Balkan2007]Mokia Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 200 ...

  10. HDU5322 Hope(DP + CDQ分治 + NTT)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5322 Description Hope is a good thing, which can ...

随机推荐

  1. Android 用ping的方法判断当前网络是否可用

    判断网络的情况中,有个比较麻烦的情况就是连上了某个网络,但是那个网络无法上网 ,,, = = 想到了用ping指令来判断,经测试,可行~ ~ ~ private static final boolea ...

  2. linux grep常用参数

    # grep [-acinv] [--color=auto] '搜寻字符串' filename选项与参数:-c :计算找到 '搜寻字符串' 的次数-i :忽略大小写的不同,所以大小写视为相同-n :顺 ...

  3. HDu -2844 Coins多重背包

    这道题是典型的多重背包的题目,也是最基础的多重背包的题目 题目大意:给定n和m, 其中n为有多少中钱币, m为背包的容量,让你求出在1 - m 之间有多少种价钱的组合,由于这道题价值和重量相等,所以就 ...

  4. Universal-Image-Loader 基本使用

    简介 https://github.com/nostra13/Android-Universal-Image-Loader 项目的结构:每一个图片的加载和显示任务都运行在独立的线程中,除非这个图片缓存 ...

  5. 程序员必备英语.net版(.net菜鸟的成长之路-零基础到精通)

    通过一段时间的.NET学习,我发现英文不好是我的软肋~我觉得好好补习一下英文单词水平.可是要背哪些单词呢? 经过一段时间的整理,终于整理出来了一套比较完整的.NET程序员必备单词文档.单词加详细说明. ...

  6. activiti_SpringEnvironment

    package main; import org.activiti.engine.ProcessEngine; import org.activiti.engine.ProcessEngines; i ...

  7. Linq中字段数据类型转换问题(Linq to entity,LINQ to Entities 不识别方法"System.String ToString()"问题解决)

    1.在工作中碰到这样一个问题: 使用linq时,需要查询两个表,在这两张表中关联字段分别是int,和varchar()也就是string,在linq中对这两个字段进行关联, 如果强制类型转换两个不同类 ...

  8. 【C++学习之路】派生类的构造函数(三)

    三.多层继承的派生类 1.多层继承的派生类只需在构造函数的初始化列表中写出直接基类的构造函数即可 class student { public: student(int n, string nam) ...

  9. ubuntu11.10(TQ210)下移植boa服务器

    平台:ubuntu11.10 一.下载源码包www.boa.org   boa-0.94.13.tar.gz 二.解压,在其src目录下生产makefile #tar xvfz  boa-0.94.1 ...

  10. Linux wget下载https类型文件报错解决方法 转自老左博客

    原文链接:http://www.laozuo.org/3648.html 一般我们远程调用下载文件直接用wget就可以,一般文件路径类型是http.如果有遇到是https就会下载出错,稍微不注意的新手 ...