BZOJ3479: [Usaco2014 Mar]Watering the Fields
3479: [Usaco2014 Mar]Watering the Fields
Time Limit: 10 Sec Memory Limit: 128 MB
Submit: 81 Solved: 42
[Submit][Status]
Description
Due to a lack of rain, Farmer John wants to build an irrigation system to send water between his N fields (1 <= N <= 2000). Each field i is described by a distinct point (xi, yi) in the 2D plane, with 0 <= xi, yi <= 1000. The cost of building a water pipe between two fields i and j is equal to the squared Euclidean distance between them: (xi - xj)^2 + (yi - yj)^2 FJ would like to build a minimum-cost system of pipes so that all of his fields are linked together -- so that water in any field can follow a sequence of pipes to reach any other field. Unfortunately, the contractor who is helping FJ install his irrigation system refuses to install any pipe unless its cost (squared Euclidean length) is at least C (1 <= C <= 1,000,000). Please help FJ compute the minimum amount he will need pay to connect all his fields with a network of pipes.
草坪上有N个水龙头,位于(xi,yi)
求将n个水龙头连通的最小费用。
任意两个水龙头可以修剪水管,费用为欧几里得距离的平方。
修水管的人只愿意修费用大于等于c的水管。
Input
* Line 1: The integers N and C.
* Lines 2..1+N: Line i+1 contains the integers xi and yi.
Output
* Line 1: The minimum cost of a network of pipes connecting the fields, or -1 if no such network can be built.
Sample Input
0 2
5 0
4 3
INPUT DETAILS: There are 3 fields, at locations (0,2), (5,0), and (4,3). The contractor will only install pipes of cost at least 11.
Sample Output
OUTPUT DETAILS: FJ cannot build a pipe between the fields at (4,3) and (5,0), since its cost would be only 10. He therefore builds a pipe between (0,2) and (5,0) at cost 29, and a pipe between (0,2) and (4,3) at cost 17.
HINT
Source
题解:
呵呵,裸MST
代码:
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<string>
#define inf 1000000000
#define maxn 2500
#define maxm 500+100
#define eps 1e-10
#define ll long long
#define pa pair<int,int>
#define for0(i,n) for(int i=0;i<=(n);i++)
#define for1(i,n) for(int i=1;i<=(n);i++)
#define for2(i,x,y) for(int i=(x);i<=(y);i++)
#define for3(i,x,y) for(int i=(x);i>=(y);i--)
#define mod 1000000007
#define sqr(x) (x)*(x)
using namespace std;
inline int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=*x+ch-'';ch=getchar();}
return x*f;
}
struct rec{int x,y;}a[maxn];
struct edge{int x,y,w;}e[maxn*maxn];
int n,k,ans,tot,fa[maxn];
inline bool cmp(edge a,edge b)
{
return a.w<b.w;
}
inline int find(int x){return fa[x]==x?x:fa[x]=find(fa[x]);}
int main()
{
freopen("input.txt","r",stdin);
freopen("output.txt","w",stdout);
n=read();k=read();
for1(i,n)
{
a[i].x=read();a[i].y=read();
for1(j,i-)
e[++tot].x=i,e[tot].y=j,e[tot].w=sqr(a[i].x-a[j].x)+sqr(a[i].y-a[j].y);
}
sort(e+,e+tot+,cmp);
int j=,i;
while(e[j].w<k)j++;
for1(i,n)fa[i]=i;
for(i=;i<n;i++)
{
while(j<=tot&&find(e[j].x)==find(e[j].y))j++;
if(j>tot)break;
fa[find(e[j].x)]=find(e[j].y);
ans+=e[j].w;
j++;
}
if(i<n)printf("-1\n");else printf("%d\n",ans);
return ;
}
BZOJ3479: [Usaco2014 Mar]Watering the Fields的更多相关文章
- BZOJ 3479: [Usaco2014 Mar]Watering the Fields( MST )
MST...一开始没注意-1结果就WA了... ---------------------------------------------------------------------------- ...
- bzoj 3479: [Usaco2014 Mar]Watering the Fields
3479: [Usaco2014 Mar]Watering the Fields Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 174 Solved ...
- 【BZOJ】3479: [Usaco2014 Mar]Watering the Fields(kruskal)
http://www.lydsy.com/JudgeOnline/problem.php?id=3479 这个还用说吗.... #include <cstdio> #include < ...
- BZOJ 3479: [Usaco2014 Mar]Watering the Fields(最小生成树)
这个= =最近刷的都是水题啊QAQ 排除掉不可能的边然后就最小生成树就行了= = CODE: #include<cstdio>#include<iostream>#includ ...
- BZOJ_3479_[Usaco2014 Mar]Watering the Fields_Prim
BZOJ_3479_[Usaco2014 Mar]Watering the Fields_Prim Description Due to a lack of rain, Farmer John wan ...
- BZOJ 3477: [Usaco2014 Mar]Sabotage( 二分答案 )
先二分答案m, 然后对于原序列 A[i] = A[i] - m, 然后O(n)找最大连续子序列和, 那么此时序列由 L + mx + R组成. L + mx + R = sum - n * m, s ...
- BZOJ_3477_[Usaco2014 Mar]Sabotage_二分答案
BZOJ_3477_[Usaco2014 Mar]Sabotage_二分答案 题意: 约翰的牧场里有 N 台机器,第 i 台机器的工作能力为 Ai.保罗阴谋破坏一些机器,使得约翰的工作效率变低.保罗可 ...
- P2212 [USACO14MAR]浇地Watering the Fields
P2212 [USACO14MAR]浇地Watering the Fields 题目描述 Due to a lack of rain, Farmer John wants to build an ir ...
- (寒假集训)Watering the Fields (最小生成树)
Watering the Fields 时间限制: 1 Sec 内存限制: 64 MB提交: 26 解决: 10[提交][状态][讨论版] 题目描述 Due to a lack of rain, ...
随机推荐
- 浅谈Manacher算法与扩展KMP之间的联系
首先,在谈到Manacher算法之前,我们先来看一个小问题:给定一个字符串S,求该字符串的最长回文子串的长度.对于该问题的求解.网上解法颇多.时间复杂度也不尽同样,这里列述几种常见的解法. 解法一 ...
- Spring事务管理使用
发现问题 最近,碰到一个问题,再用spring实现事务管理的时候,发现不起作用,在出异常时,并不会回滚数据库操作. 我想实现的功能如下: @Transactional(isolation=Isolat ...
- Java – 4 Security Vulnerabilities Related Coding Practices to Avoid---reference
This article represents top 4 security vulnerabilities related coding practice to avoid while you ar ...
- java byte数组与int,long,short,byte转换
public class DataTypeChangeHelper { /** * 将一个单字节的byte转换成32位的int * * @param b * byte * @return conver ...
- Java基础知识强化之IO流笔记02:try...catch的方式处理异常
1. 案例示例: package com.himi.trycatch; public class ExceptionDemo { public static void main(String[] ar ...
- 【转】大素数判断和素因子分解【miller-rabin和Pollard_rho算法】
集训队有人提到这个算法,就学习一下,如果用到可以直接贴模板,例题:POJ 1811 转自:http://www.cnblogs.com/kuangbin/archive/2012/08/19/2646 ...
- 矩阵快速幂(入门) 学习笔记hdu1005, hdu1575, hdu1757
矩阵快速幂是基于普通的快速幂的一种扩展,如果不知道的快速幂的请参见http://www.cnblogs.com/Howe-Young/p/4097277.html.二进制这个东西太神奇了,好多优秀的算 ...
- SpringMVC09异常处理和类型转化器
public class User { private String name; private Integer age; public String getName() { return name; ...
- codevs 1173 最优贸易(DP+SPFA运用)
/* 中国的题目 ——贱买贵卖 0.0 这题wa了好多遍 第一遍看着题 哎呀这不很简单嘛 从起点能到的点都是合法的点 然后统计合法的点里最大最小值 然后printf 也不知道哪里来的自信 就这么交了 ...
- css过渡+3D
<!DOCTYPE html><html><head> <title>guodu</title> <meta charset=&quo ...