HDU4099(斐波那契数列与字典树)
题意:给出斐波那契数列的前k位,k不超过40,找出最小的正整数n,满足F(n)的前k位与给定数的前k位相同,斐波那契数列的项数不超过100000。
解析:本题可以分为两步:
第一步就是预处理出100000项斐波那契数列的前40位,插入到字典树中。
第二步就是查询匹配求最小的n。
对于第一步,我们可以把斐波那契数列精确到50多位,然后只存40位即可,这样就防止进位的误差。在斐波那契数列加法过程中,我们只把它的前50多
位进行相加,不然存不下。
#include <iostream>
#include <string.h>
#include <stdio.h> using namespace std;
const int N=10; int f1[65],f2[65],f3[65]; class Trie
{
public:
int v;
int flag;
Trie *next[N];
Trie()
{
v=-1;
memset(next,NULL,sizeof(next));
}
}; Trie *root; void Insert(char *S,int ans)
{
int len=strlen(S);
Trie *p=root;
for(int i=0;i<len;i++)
{
int id=S[i]-'0';
if(p->next[id]==NULL)
p->next[id]=new Trie();
p=p->next[id];
if(p->v<0) p->v=ans;
}
} int Find(char *S)
{
Trie *p=root;
int count;
int len=strlen(S);
for(int i=0;i<len;i++)
{
int id=S[i]-'0';
p=p->next[id];
if(p==NULL) return -1;
else count=p->v;
}
return count;
} void Init()
{
int h;
char str[65]="1";
memset(f1,0,sizeof(f1));
memset(f2,0,sizeof(f2));
memset(f3,0,sizeof(f3));
f1[0]=1;f2[0]=1;
Insert(str,0);
for(int i=2;i<100000;i++)
{
memset(str,0,sizeof(str));
int r=0;
for(int j=0;j<60;j++)
{
f3[j]=f1[j]+f2[j]+r;
r=f3[j]/10;
f3[j]%=10;
}
for(int j=59;j>=0;j--)
if(f3[j])
{
h=j;
break;
}
int k=0;
for(int j=h;j>=0;j--)
{
str[k++]=f3[j]+'0';
if(k>=40) break;
}
Insert(str,i);
if(h>55)
{
for(int j=1;j<59;j++)
f3[j-1]=f3[j];
for(int j=1;j<59;j++)
f2[j-1]=f2[j];
}
for(int j=0;j<60;j++)
f1[j]=f2[j];
for(int j=0;j<60;j++)
f2[j]=f3[j];
}
} int main()
{
root=new Trie();
Init();
char str[105];
int t,i,j,k=1;
scanf("%d",&t);
while(t--)
{
scanf("%s",str);
printf("Case #%d: ",k++);
int tmp=Find(str);
printf("%d\n",tmp);
}
return 0;
}
HDU4099(斐波那契数列与字典树)的更多相关文章
- Python3 ——斐波那契数列(经典)
刚刚学习了 斐波那契数列,整理一下思路,写个博文给未来的学弟学妹参考一下,希望能够帮助到他们 永远爱你们的 ----新宝宝 经历过简单的学习之后,写出一个比较简单的代码,斐波那契数列:具体程序如下: ...
- 以计算斐波那契数列为例说说动态规划算法(Dynamic Programming Algorithm Overlapping subproblems Optimal substructure Memoization Tabulation)
动态规划(Dynamic Programming)是求解决策过程(decision process)最优化的数学方法.它的名字和动态没有关系,是Richard Bellman为了唬人而取的. 动态规划 ...
- Python编程笔记(第三篇)【补充】三元运算、文件处理、检测文件编码、递归、斐波那契数列、名称空间、作用域、生成器
一.三元运算 三元运算又称三目运算,是对简单的条件语句的简写,如: 简单条件处理: if 条件成立: val = 1 else: val = 2 改成三元运算 val = 1 if 条件成立 else ...
- Python基础(二):斐波那契数列、模拟cp操作、生成8位随机密码
一.斐波那契数列 目标: 编写fib.py脚本,主要要求如下: 输出具有10个数字的斐波那契数列 使用for循环和range函数完成 改进程序,要求用户输入一个数字,可以生成用户需要长度的斐波那契数列 ...
- 【剑指Offer】10- I. 斐波那契数列 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 个人微信公众号:负雪明烛 目录 题目描述 解题方法 递归 动态规划 日期 题目地址:htt ...
- C#求斐波那契数列第30项的值(递归和非递归)
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...
- 斐波拉契数列加强版——时间复杂度O(1),空间复杂度O(1)
对于斐波拉契经典问题,我们都非常熟悉,通过递推公式F(n) = F(n - ) + F(n - ),我们可以在线性时间内求出第n项F(n),现在考虑斐波拉契的加强版,我们要求的项数n的范围为int范围 ...
- js中的斐波那契数列法
//斐波那契数列:1,2,3,5,8,13…… //从第3个起的第n个等于前两个之和 //解法1: var n1 = 1,n2 = 2; for(var i=3;i<101;i++){ var ...
- 剑指Offer面试题:8.斐波那契数列
一.题目:斐波那契数列 题目:写一个函数,输入n,求斐波那契(Fibonacci)数列的第n项.斐波那契数列的定义如下: 二.效率很低的解法 很多C/C++/C#/Java语言教科书在讲述递归函数的时 ...
随机推荐
- sqlserver存储过程及易错点
create PROCEDURE [dbo].[xiao_adduser] @username NVARCHAR(), @password NVARCHAR(), @adddate DATETIME ...
- 一周学会Mootools 1.4中文教程:(5)Ajax
ajax在我们前台的开发中是非常重要的,所以我们单独拿出一节课来讲述,首先我们看一下mootools的ajax构成 语法: var myRequest=new Request([参数]); 参数: u ...
- C#学习日志 day 3 ------ 基本语句示例
写c#首先需要知道的就是数据类型,这里是所有c#中的所有数据类型以及说明.
- POJ 2110 Mountain Walking 二分+bfs
传送门 昨天看到这个题还以为是个脑残的dp, 然而脑残的是我. 题目意思就是从左上角走到右下角, 设x为路径上的最大值-最小值, 求x的最小值. 二分x, 对于每一个x, 枚举下界lower, low ...
- [LeetCode]题解(python):138-Copy List with Random Pointer
这道题目不是太懂,参考了http://www.cnblogs.com/zuoyuan/p/3745126.html的博客. 题意: A linked list is given such that e ...
- ES6新特性简介
ES6新特性简介 环境安装 npm install -g babel npm install -g babel-node //提供基于node的REPL环境 //创建 .babelrc 文件 {&qu ...
- java设计模式(二)单例模式 建造者模式
(三)单例模式 单例模式应该是最常见的设计模式,作用是保证在JVM中,该对象仅仅有一个实例存在. 长处:1.降低某些创建比較频繁的或者比較大型的对象的系统开销. 2.省去了new操作符,减少系统内存使 ...
- Matlab中的取整-floor,ceil,fix,round
FLOOR Round towards minus infinity. FLOOR(X) rounds the elements of X to the nearest integers toward ...
- Spring_database_Template
配置applicationContext.xml <?xml version="1.0" encoding="UTF-8"?> <beans ...
- c++之构造函数学习
#include<stdio.h> class Test { private: int i; int j; int k; public : ...