HDU 4633 Who's Aunt Zhang (Polya定理+快速幂)
题目地址:http://acm.hdu.edu.cn/showproblem.php?pid=4633
典型的Polya定理:
思路:根据Burnside引理,等价类个数等于所有的置换群中的不动点的个数的平均值,根据Polya定理,不动点的个数等于Km(f),m(f)为置换f的循环节数,因此一次枚举魔方的24中置换,人肉数循环节数即可,注意细节,别数错了。
1、静止不动,(顶点8个循环,边12个循环,面54个循环)
2、通过两个对立的顶点,分别旋转120,240,有4组顶点,(点4个循环,边4个循环,面18个循环)x2(120和240度两种)x4(4组对角顶点)
3、通过两个对立面的中心,分别旋转90,180,270度。有3组面
在每次旋转90度和270度的时候(顶点2个循环节,边3个循环节,面15个循环节)x2(90和270两种角度)x3(三组对立面)
在每次旋转180度的时候(顶点4个循环节,边6个循环节,面28个循环节)x1(只有180度)x3(三组对里面)
4、通过两条对立的棱的中心,分别旋转180度,有6组棱(顶点4个循环节,边7个循环节,面27个循环节)×1(180度)×6(6组对立棱)
AC代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <string>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <list>
#include <deque>
#include <queue>
#include <iterator>
#include <stack>
#include <map>
#include <set>
#include <algorithm>
#include <cctype>
using namespace std; typedef long long LL;
const int N=1;
const int mod=10007;
const int INF=0x3f3f3f3f;
const double PI=acos(-1.0); int powmod(int a,int b)
{
int ans=1;
while(b)
{
if(b&1) ans=(ans*a)%mod;
a=(a*a)%mod;
b>>=1;
}
return ans;
} int main()
{
int i,j,t,k,ca=0;
scanf("%d",&t);
while(t--)
{
scanf("%d",&k);
int xh=0;
xh=(xh+powmod(k,74))%mod;
xh=(xh+6*powmod(k,20))%mod;
xh=(xh+3*powmod(k,38))%mod;
xh=(xh+6*powmod(k,38))%mod;
xh=(xh+8*powmod(k,26))%mod;
xh=(xh*powmod(24,mod-2))%mod;
printf("Case %d: %d\n",++ca,xh);
}
return 0;
}
/*
本题模型共有4大类置换,共24种:
1. 不做任何旋转 K ^ (54 + 12 + 8)
2. 绕相对面中心的轴转
1) 90度 K ^ (15 + 3 + 2) * 3
1) 180度 K ^ (28 + 6 + 4) * 3
1) 270度 K ^ (15 + 3 + 2) * 3
3. 绕相对棱中心的轴转
1) 180度 K ^ (27 + 7 + 4) * 6
4. 绕相对顶点的轴转
1) 120度 K ^ (18 + 4 + 4) * 4
1) 240度 K ^ (18 + 4 + 4) * 4
*/
HDU 4633 Who's Aunt Zhang (Polya定理+快速幂)的更多相关文章
- HDU 4633 Who's Aunt Zhang ★(Polya定理 + 除法取模)
题意 用K个颜色给魔方染色,魔方只能整体旋转并且旋转重合的方案算一种,求一共有多少不同的染色方案. 思路 经典的Polya应用,记住正六面体的置换群就可以了,魔方就是每个大面变成9个小面了而已: 本题 ...
- HDU 4633 Who's Aunt Zhang (2013多校4 1002 polya计数)
Who's Aunt Zhang Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- hdu 4633 Who's Aunt Zhang(polya+逆元)
Who's Aunt Zhang Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- hdu 4704 sum(费马小定理+快速幂)
题意: 这题意看了很久.. s(k)表示的是把n分成k个正整数的和,有多少种分法. 例如: n=4时, s(1)=1 4 s(2)=3 1,3 3,1 2,2 s ...
- HDU 4704 Sum( 费马小定理 + 快速幂 )
链接:传送门 题意:求 N 的拆分数 思路: 吐嘈:求一个数 N 的拆分方案数,但是这个拆分方案十分 cd ,例如:4 = 4 , 4 = 1 + 3 , 4 = 3 + 1 , 4 = 2 + 2 ...
- HDU 4633 Who's Aunt Zhang(polay计数)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4633 题意:有下面一个魔方.有K种颜色.可以为顶点.边.面(每个面有9个小面)染色.两种染色算作一种当 ...
- 组合数(Lucas定理) + 快速幂 --- HDU 5226 Tom and matrix
Tom and matrix Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5226 Mean: 题意很简单,略. analy ...
- poj 2888 Magic Bracelet(Polya+矩阵快速幂)
Magic Bracelet Time Limit: 2000MS Memory Limit: 131072K Total Submissions: 4990 Accepted: 1610 D ...
- hdu 1817 Necklace of Beads(Polya定理)
Necklace of Beads Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others ...
随机推荐
- JRainbow开发进度
最新版本下载 http://pan.baidu.com/s/1c0GcDMg&third=15 相关信息 JRainbow的简单介绍:http://blog.csdn.net/jrainbow ...
- C#控件、窗体置顶
//控件置于顶层和底层 panel.BringToFront();//置于顶层 panel.SendToBack();//置于底层 //窗体置顶 TopMost = true;
- OpenCV学习 3:平滑过度与边缘检测
原创文章,欢迎转载,转载请注明出处 用来记录学习的过程,这个是简单的相关函数的熟悉,内部机制和选择何种选择函数参数才能达到自己的要求还不太清楚,先学者吧..后面会慢慢清楚的. 和前面相比,主 ...
- 求一个int型整数的两种递减数之和(华为2015笔试题及答案)
给出一个整数(负数使用其绝对值),输出这个整数中的两种递减数(1.最大递减数:2.递减数中各位数之和最大的数)之和. 递减数:一个数字的递减数是指相邻的数位从大到小排列的数字,不包含相邻的数位大小相同 ...
- CSS自学笔记(1):CSS简介
一.什么是CSS CSS(Cascading Style Sheet(级联样式表))是一种用来表现HTML(标准通用标记语言的一个应用)或XML(标准通用标记语言的一个子集)等文件样式的计算机语言. ...
- 完美解决IE(IE6/IE7/IE8)不兼容HTML5标签的方法zt
HTML5的语义化标签以及属性,可以让开发者非常方便地实现清晰的web页面布局,加上CSS3的效果渲染,快速建立丰富灵活的web页面显得非常简单. HTML5的新标签元素有: <header&g ...
- 几种改变Activity回退栈默认行为的Intent Flag
FLAG_与LaunchMode相比最大的不同是临时性 1.FLAG_ACTIVITY_NEW_TASK: Developer.android.com的说法: (1)在新的task中启动这个Activ ...
- LINUX常用命令-系统配置篇(二)
学到一定程度了就会关注系统方面的一些配置,只是就需要相关的命令了.现在把Linux查看系统配置常用命令列出来 # uname -a # 查看内核/操作系统/CPU信息# head -n 1 /etc/ ...
- git搭建服务器
搭建Git服务器 在远程仓库一节中,我们讲了远程仓库实际上和本地仓库没啥不同,纯粹为了7x24小时开机并交换大家的修改. GitHub就是一个免费托管开源代码的远程仓库.但是对于某些视源代码如生命的商 ...
- Xcode 真机测试破解方法(转加修改)xcode 4.3 通过
Xcode 真机测试破解方法(转加修改)xcode 4.3 通过 生成本机证书 应用程序->实用工具->钥匙串访问 菜单:钥匙串访问->证书助理->创建证书, 然后按以下图片顺 ...