第一章相对简单,也么有什么需要记录的内容,主要用到的工具的简介及环境配置,粗略的过一下就行了。下面我们开始第二章的学习

CHAPTER 2
2.2Python Language Basics, IPython, and Jupyter Notebooks

when you first meet the python ,you may be confuse by

In [6]: data = {i : np.random.randn() for i in range(7)}

In [7]: data
Out[7]:
{0: -0.20470765948471295,
 1: 0.47894333805754824,
 2: -0.5194387150567381,
 3: -0.55573030434749,
 4: 1.9657805725027142,
 5: 1.3934058329729904,
 6: 0.09290787674371767}

While entering expressions in the shell, pressing the Tab key will search the namespace for any variables (objects,functions, etc.) matching the characters you have typed so far:

In [1]: an_apple = 27

In [2]: an_example = 42

In [3]: an<Tab>
an_apple    and         an_example  any

the 'tab' is very useful ,when you use Ipython or Jupyter,also pycharm, it can compliment your order

Introspection
Using a question mark (?) before or after a variable will display some general infor‐
mation about the object:

In [8]: b = [1, 2, 3]

In [9]: b?
Type:       list
String Form:[1, 2, 3]
Length:     3
Docstring:

In [10]: print?
Docstring:
print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)

Prints the values to a stream, or to sys.stdout by default.
Optional keyword arguments:
file:  a file-like object (stream); defaults to the current sys.stdout.
sep:   string inserted between values, default a space.
end:   string appended after the last value, default a newline.
flush: whether to forcibly flush the stream.
Type:      builtin_function_or_method

def add_numbers(a, b):
    """
    Add two numbers together

Returns
    -------
    the_sum : type of arguments
    """
    return a + b
Then using ? shows us the docstring:
In [11]: add_numbers?
Signature: add_numbers(a, b)
Docstring:
Add two numbers together

Returns
-------
the_sum : type of arguments
File:      <ipython-input-9-6a548a216e27>
Type:      function
Using ?? will also show the function’s source code if possible:
In [12]: add_numbers??
Signature: add_numbers(a, b)
Source:
def add_numbers(a, b):
    """
    Add two numbers together

Returns
    -------
    the_sum : type of arguments
    """
    return a + b
File:      <ipython-input-9-6a548a216e27>
Type:      function

you also can use  wildcard (*)  tomatching the expression

In [13]: np.*load*?
np.__loader__
np.load
np.loads
np.loadtxt
np.pkgload

The %run Command

You can run any file as a Python program inside the environment of your IPython
session using the %run command.

In the Jupyter notebook, you may also use the related %load magic function, which
imports a script into a code cell

Executing Code from the Clipboard

In [17]: %paste

Standard IPython keyboard shortcuts  Keyboard shortcut Description
Ctrl-P or up-arrow Search backward in command history for commands starting with currently entered text
Ctrl-N or down-arrow Search forward in command history for commands starting with currently entered text
Ctrl-R Readline-style reverse history search (partial matching)
Ctrl-Shift-V Paste text from clipboard
Ctrl-C Interrupt currently executing code
Ctrl-A Move cursor to beginning of line
Ctrl-E Move cursor to end of line
Ctrl-K Delete text from cursor until end of line
Ctrl-U Discard all text on current line
Ctrl-F Move cursor forward one character
Ctrl-B Move cursor back one character
Ctrl-L Clear screen

About Magic Commands

IPython’s special commands (which are not built into Python itself) are known as“magic” commands. These are designed to facilitate common tasks and enable you to easily control the behavior of the IPython system.

In [20]: a = np.random.randn(100, 100)
In [20]: %timeit np.dot(a, a)
10000 loops, best of 3: 20.9 µs per loop

In [21]: %debug?
Docstring:
::

%debug [--breakpoint FILE:LINE] [statement [statement ...]]

Activate the interactive debugger.

In [22]: %pwd
Out[22]: '/home/wesm/code/pydata-book

Table 2-2. Some frequently used IPython magic commands Command Description
%quickref Display the IPython Quick Reference Card
%magic Display detailed documentation for all of the available magic commands
%debug Enter the interactive debugger at the bottom of the last exception traceback
%hist Print command input (and optionally output) history
%pdb Automatically enter debugger after any exception
%paste Execute preformatted Python code from clipboard
%cpaste Open a special prompt for manually pasting Python code to be executed
%reset Delete all variables/names defined in interactive namespace
%page OBJECT Pretty-print the object and display it through a pager
%run script.py Run a Python script inside IPython
%prun statement Execute statement with cProfile and report the profiler output
%time statement Report the execution time of a single statement
%timeit statement Run a statement multiple times to compute an ensemble average execution time; useful for timing code with very short execution time
%who, %who_ls, %whos Display variables defined in interactive namespace, with varying levels of information/verbosity
%xdel variable Delete a variable and attempt to clear any references to the object in the IPython internals

Matplotlib Integration

In the IPython shell
In [26]: %matplotlib
Using matplotlib backend: Qt4Agg
In Jupyter, the command is a little different 
In [26]: %matplotlib inline

2.3 Python Language Basics


so easy,something about the grammar of python

if not isinstance(x, list) and isiterable(x):
  x = list(x)

Check if the object is a list (or a NumPy array) and, if it is not, convert it to be

Table 2-3. Binary operators  Operation Description
a + b Add a and b
a - b Subtract b from a
a * b Multiply a by b
a / b Divide a by b
a // b Floor-divide a by b, dropping any fractional remainder
a ** b Raise a to the b power
a & b True if both a and b are True; for integers, take the bitwise AND
a | b True if either a or b is True; for integers, take the bitwise OR
a ^ b For booleans, True if a or b is True, but not both; for integers, take the bitwise EXCLUSIVE-OR

a == b True if a equals b
a != b True if a is not equal to b
a <= b, a < b True if a is less than (less than or equal) to b
a > b, a >= b True if a is greater than (greater than or equal) to b
a is b True if a and b reference the same Python object
a is not b True if a and b reference different Python objects

Most objects in Python, such as lists, dicts, NumPy arrays, and most user-defined types (classes), are mutable.

Others, like strings and tuples, are immutable

Datetime format specification (ISO C89 compatible)
Type Description
%Y Four-digit year
%y Two-digit year

Type Description
%m Two-digit month [01, 12]
%d Two-digit day [01, 31]
%H Hour (24-hour clock) [00, 23]
%I Hour (12-hour clock) [01, 12]
%M Two-digit minute [00, 59]
%S Second [00, 61] (seconds 60, 61 account for leap seconds)
%w Weekday as integer [0 (Sunday), 6]
%U Week number of the year [00, 53]; Sunday is considered the first day of the week, and days before the first Sunday of the year are “week 0”
%W Week number of the year [00, 53]; Monday is considered the first day of the week, and days before the first Monday of the year are “week 0”
%z UTC time zone offset as +HHMM or -HHMM; empty if time zone naive
%F Shortcut for %Y-%m-%d (e.g., 2012-4-18)
%D Shortcut for %m/%d/%y (e.g., 04/18/12)

python for data analysis 2nd 读书笔记(一)的更多相关文章

  1. 数据分析---《Python for Data Analysis》学习笔记【04】

    <Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...

  2. 数据分析---《Python for Data Analysis》学习笔记【03】

    <Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...

  3. 数据分析---《Python for Data Analysis》学习笔记【02】

    <Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...

  4. 数据分析---《Python for Data Analysis》学习笔记【01】

    <Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...

  5. 学习笔记之Python for Data Analysis

    Python for Data Analysis, 2nd Edition https://www.safaribooksonline.com/library/view/python-for-data ...

  6. 《python for data analysis》第五章,pandas的基本使用

    <利用python进行数据分析>一书的第五章源码与读书笔记 直接上代码 # -*- coding:utf-8 -*-# <python for data analysis>第五 ...

  7. 《python for data analysis》第十章,时间序列

    < python for data analysis >一书的第十章例程, 主要介绍时间序列(time series)数据的处理.label:1. datetime object.time ...

  8. 《python for data analysis》第九章,数据聚合与分组运算

    # -*- coding:utf-8 -*-# <python for data analysis>第九章# 数据聚合与分组运算import pandas as pdimport nump ...

  9. 《python for data analysis》第七章,数据规整化

    <利用Python进行数据分析>第七章的代码. # -*- coding:utf-8 -*-# <python for data analysis>第七章, 数据规整化 imp ...

随机推荐

  1. python之科学函数课——Numpy

    一般来讲,数据都是由行列表示的,也就是矩阵,类似于Excel表格一样的东西. 首先我们学习一下Numpy,装好anaconda之后默认是装好的,下面是numpy的一些函数库:Numpy是科学计算库,是 ...

  2. sql优化之concat/concat_ws/group_concat

    原文1:https://baijiahao.baidu.com/s?id=1595349117525189591&wfr=spider&for=pc 原文2:https://www.y ...

  3. 基于django的博客系统

    这是前段代码 达到的效果并不是太好,但我还是要发出来,有更好的建议可以和我讨论 后台还算可以 添加了分类和文章两个功能,还在优化,敬请期待....

  4. linux重装rabbitmq的问题

    一.卸载 [root@zabbix_server lib]# rpm -qa|grep rabbitmq rabbitmq-server--.noarch [root@zabbix_server li ...

  5. Linux Apache虚拟主机配置方法

    apache 虚拟主机配置 注意: 虚拟主机可以开很多个 虚拟主机配置之后,原来的默认/etc/httpd/httpd.conf中的默认网站就不会生效了 练习: 主机server0 ip:172.25 ...

  6. python学习中遇到的错误及解决办法

    1. nodename nor servname provided 原因:Python程序中有段程序调用 socket.gethostbyname(socket.gethostname()) sock ...

  7. nltk分词

    1.安装nltk 2.运行如下 >>>import nltk>>> nltk.download('punkt') 3.代码: import nltk sentenc ...

  8. SpringMVC避免IE执行AJAX,返回JSON出现下载文件

  9. System program tools

    program 描述     RSBDCOS0 执行 OS 命令 (已登录在 SYSLOG 和跟踪文件中)                            

  10. ERC20 token standard issues.