第一章相对简单,也么有什么需要记录的内容,主要用到的工具的简介及环境配置,粗略的过一下就行了。下面我们开始第二章的学习

CHAPTER 2
2.2Python Language Basics, IPython, and Jupyter Notebooks

when you first meet the python ,you may be confuse by

In [6]: data = {i : np.random.randn() for i in range(7)}

In [7]: data
Out[7]:
{0: -0.20470765948471295,
 1: 0.47894333805754824,
 2: -0.5194387150567381,
 3: -0.55573030434749,
 4: 1.9657805725027142,
 5: 1.3934058329729904,
 6: 0.09290787674371767}

While entering expressions in the shell, pressing the Tab key will search the namespace for any variables (objects,functions, etc.) matching the characters you have typed so far:

In [1]: an_apple = 27

In [2]: an_example = 42

In [3]: an<Tab>
an_apple    and         an_example  any

the 'tab' is very useful ,when you use Ipython or Jupyter,also pycharm, it can compliment your order

Introspection
Using a question mark (?) before or after a variable will display some general infor‐
mation about the object:

In [8]: b = [1, 2, 3]

In [9]: b?
Type:       list
String Form:[1, 2, 3]
Length:     3
Docstring:

In [10]: print?
Docstring:
print(value, ..., sep=' ', end='\n', file=sys.stdout, flush=False)

Prints the values to a stream, or to sys.stdout by default.
Optional keyword arguments:
file:  a file-like object (stream); defaults to the current sys.stdout.
sep:   string inserted between values, default a space.
end:   string appended after the last value, default a newline.
flush: whether to forcibly flush the stream.
Type:      builtin_function_or_method

def add_numbers(a, b):
    """
    Add two numbers together

Returns
    -------
    the_sum : type of arguments
    """
    return a + b
Then using ? shows us the docstring:
In [11]: add_numbers?
Signature: add_numbers(a, b)
Docstring:
Add two numbers together

Returns
-------
the_sum : type of arguments
File:      <ipython-input-9-6a548a216e27>
Type:      function
Using ?? will also show the function’s source code if possible:
In [12]: add_numbers??
Signature: add_numbers(a, b)
Source:
def add_numbers(a, b):
    """
    Add two numbers together

Returns
    -------
    the_sum : type of arguments
    """
    return a + b
File:      <ipython-input-9-6a548a216e27>
Type:      function

you also can use  wildcard (*)  tomatching the expression

In [13]: np.*load*?
np.__loader__
np.load
np.loads
np.loadtxt
np.pkgload

The %run Command

You can run any file as a Python program inside the environment of your IPython
session using the %run command.

In the Jupyter notebook, you may also use the related %load magic function, which
imports a script into a code cell

Executing Code from the Clipboard

In [17]: %paste

Standard IPython keyboard shortcuts  Keyboard shortcut Description
Ctrl-P or up-arrow Search backward in command history for commands starting with currently entered text
Ctrl-N or down-arrow Search forward in command history for commands starting with currently entered text
Ctrl-R Readline-style reverse history search (partial matching)
Ctrl-Shift-V Paste text from clipboard
Ctrl-C Interrupt currently executing code
Ctrl-A Move cursor to beginning of line
Ctrl-E Move cursor to end of line
Ctrl-K Delete text from cursor until end of line
Ctrl-U Discard all text on current line
Ctrl-F Move cursor forward one character
Ctrl-B Move cursor back one character
Ctrl-L Clear screen

About Magic Commands

IPython’s special commands (which are not built into Python itself) are known as“magic” commands. These are designed to facilitate common tasks and enable you to easily control the behavior of the IPython system.

In [20]: a = np.random.randn(100, 100)
In [20]: %timeit np.dot(a, a)
10000 loops, best of 3: 20.9 µs per loop

In [21]: %debug?
Docstring:
::

%debug [--breakpoint FILE:LINE] [statement [statement ...]]

Activate the interactive debugger.

In [22]: %pwd
Out[22]: '/home/wesm/code/pydata-book

Table 2-2. Some frequently used IPython magic commands Command Description
%quickref Display the IPython Quick Reference Card
%magic Display detailed documentation for all of the available magic commands
%debug Enter the interactive debugger at the bottom of the last exception traceback
%hist Print command input (and optionally output) history
%pdb Automatically enter debugger after any exception
%paste Execute preformatted Python code from clipboard
%cpaste Open a special prompt for manually pasting Python code to be executed
%reset Delete all variables/names defined in interactive namespace
%page OBJECT Pretty-print the object and display it through a pager
%run script.py Run a Python script inside IPython
%prun statement Execute statement with cProfile and report the profiler output
%time statement Report the execution time of a single statement
%timeit statement Run a statement multiple times to compute an ensemble average execution time; useful for timing code with very short execution time
%who, %who_ls, %whos Display variables defined in interactive namespace, with varying levels of information/verbosity
%xdel variable Delete a variable and attempt to clear any references to the object in the IPython internals

Matplotlib Integration

In the IPython shell
In [26]: %matplotlib
Using matplotlib backend: Qt4Agg
In Jupyter, the command is a little different 
In [26]: %matplotlib inline

2.3 Python Language Basics


so easy,something about the grammar of python

if not isinstance(x, list) and isiterable(x):
  x = list(x)

Check if the object is a list (or a NumPy array) and, if it is not, convert it to be

Table 2-3. Binary operators  Operation Description
a + b Add a and b
a - b Subtract b from a
a * b Multiply a by b
a / b Divide a by b
a // b Floor-divide a by b, dropping any fractional remainder
a ** b Raise a to the b power
a & b True if both a and b are True; for integers, take the bitwise AND
a | b True if either a or b is True; for integers, take the bitwise OR
a ^ b For booleans, True if a or b is True, but not both; for integers, take the bitwise EXCLUSIVE-OR

a == b True if a equals b
a != b True if a is not equal to b
a <= b, a < b True if a is less than (less than or equal) to b
a > b, a >= b True if a is greater than (greater than or equal) to b
a is b True if a and b reference the same Python object
a is not b True if a and b reference different Python objects

Most objects in Python, such as lists, dicts, NumPy arrays, and most user-defined types (classes), are mutable.

Others, like strings and tuples, are immutable

Datetime format specification (ISO C89 compatible)
Type Description
%Y Four-digit year
%y Two-digit year

Type Description
%m Two-digit month [01, 12]
%d Two-digit day [01, 31]
%H Hour (24-hour clock) [00, 23]
%I Hour (12-hour clock) [01, 12]
%M Two-digit minute [00, 59]
%S Second [00, 61] (seconds 60, 61 account for leap seconds)
%w Weekday as integer [0 (Sunday), 6]
%U Week number of the year [00, 53]; Sunday is considered the first day of the week, and days before the first Sunday of the year are “week 0”
%W Week number of the year [00, 53]; Monday is considered the first day of the week, and days before the first Monday of the year are “week 0”
%z UTC time zone offset as +HHMM or -HHMM; empty if time zone naive
%F Shortcut for %Y-%m-%d (e.g., 2012-4-18)
%D Shortcut for %m/%d/%y (e.g., 04/18/12)

python for data analysis 2nd 读书笔记(一)的更多相关文章

  1. 数据分析---《Python for Data Analysis》学习笔记【04】

    <Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...

  2. 数据分析---《Python for Data Analysis》学习笔记【03】

    <Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...

  3. 数据分析---《Python for Data Analysis》学习笔记【02】

    <Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...

  4. 数据分析---《Python for Data Analysis》学习笔记【01】

    <Python for Data Analysis>一书由Wes Mckinney所著,中文译名是<利用Python进行数据分析>.这里记录一下学习过程,其中有些方法和书中不同 ...

  5. 学习笔记之Python for Data Analysis

    Python for Data Analysis, 2nd Edition https://www.safaribooksonline.com/library/view/python-for-data ...

  6. 《python for data analysis》第五章,pandas的基本使用

    <利用python进行数据分析>一书的第五章源码与读书笔记 直接上代码 # -*- coding:utf-8 -*-# <python for data analysis>第五 ...

  7. 《python for data analysis》第十章,时间序列

    < python for data analysis >一书的第十章例程, 主要介绍时间序列(time series)数据的处理.label:1. datetime object.time ...

  8. 《python for data analysis》第九章,数据聚合与分组运算

    # -*- coding:utf-8 -*-# <python for data analysis>第九章# 数据聚合与分组运算import pandas as pdimport nump ...

  9. 《python for data analysis》第七章,数据规整化

    <利用Python进行数据分析>第七章的代码. # -*- coding:utf-8 -*-# <python for data analysis>第七章, 数据规整化 imp ...

随机推荐

  1. pyinstaller,scrapy和apscheduler

    一.scrapy拉起方式 1. 简单cmd拉起 from scrapy.cmdline import execute spiders = [ 'scrapy crawl liepin', 'scrap ...

  2. Huawei BGP和OSPF双边界重分布(二)

    网络拓扑: 本例主要配置和例一致,主要是在AR3260-AR1和AR3260-AR2的路由域的边界上,从AR3260-AR1上重分布进BGP 65001的路由的时候打tag 650011,在AR326 ...

  3. python note 13 内置函数

    1. lst = ["白蛇传","骷髅叹","庄周闲游"] it = lst.__iter__() print(it.__next__()) ...

  4. LAB12 Transaction

    思路:就是把aotocommit()里面的东西改改就行了. 查询要求可用房间>=所需要的房间. SQL里面查数字时,不要加单引号.字符串才要. 查询里的set ONHAND=要改成自己的变量名s ...

  5. LAB7 REST

    r需要初始化才能赋值. 不要盲目抄doGet方法,要理解题目的意思

  6. oracle 锁表sql 解锁

    1.select  *  from  v$locked_object; 查看具体的 : select  session_id , oracle_username, process from v$loc ...

  7. shp2pgsql向postgresql导入shape数据

    1. 准备好Shape文件(不仅仅是.shp文悠扬,还要有其他相关数据文件,包括.shx..prj..dbf文件). 2. 使用命令将Shape数据转换为*.sql文件 shp2pgsql -s 38 ...

  8. vue 中 直接操作 cookie 及 如何使用工具 js-cookie

    转载:https://www.cnblogs.com/xiangsj/p/9030648.html vue 中直接操作 cookie 以下3种操作方式 set: function (name, val ...

  9. 基于IDEA工具 lombok 的使用

    一.简介 Lombok 是一种 Java™ 实用工具,可用来帮助开发人员消除 Java 的冗长,尤其是对于简单的 Java 对象(POJO).它通过注解实现这一目的. 二.lombok的添加和常用注解 ...

  10. ASP.NET Core 项目简单实现身份验证及鉴权

    ASP.NET Core 身份验证及鉴权 目录 项目准备 身份验证 定义基本类型和接口 编写验证处理器 实现用户身份验证 权限鉴定 思路 编写过滤器类及相关接口 实现属性注入 实现用户权限鉴定 测试 ...