#189 stat(动态规划)
容易想到固定第一个排列为1~n,算出答案后乘上n!即可,但这样就离正解走远了。
考虑排列dp的一般套路,将数从大到小加入排列,这样每个位置第一次填数时(不管是第一个还是第二个排列)其贡献就确定了。
显然当前两个排列有用的信息仅仅是两个排列都填了、仅第一个排列填了、仅第二个排列填了、两个排列都没填的位置数量。并且注意到仅第一个排列填了和仅第二个排列填了的位置数量是相等的,同时dp过程中也知道当前填了多少个数,所以dp时只要记录两个排列都填了的位置数量即可。
于是设f[i][j][k]为填到i时,有j个位置两个排列都填了,当前贡献之和为k时的方案数,瞎转移即可。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 72
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,f[N][N][N*N];
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
int C(int n,int m){return 1ll*n*(n-1)/2%P;}
int main()
{
freopen("stat.in","r",stdin);
freopen("stat.out","w",stdout);
n=read(),m=read();
f[n+1][0][0]=1;
for (int i=n+1;i>1;i--)
{
for (int x=0;x<=n+1-i;x++)
{
int y=n+1-i-x,z=n-x-y*2;
if (y>=0&&z>=0)
for (int k=0;k<=n*n;k++)
if (f[i][x][k])
{
if (z>=2) inc(f[i-1][x][k+(i-1)*2],1ll*f[i][x][k]*z%P*(z-1)%P);
if (z>=1) inc(f[i-1][x+1][k+(i-1)],2ll*f[i][x][k]*z%P*y%P);
if (z>=1) inc(f[i-1][x+1][k+(i-1)],1ll*f[i][x][k]*z%P);
if (y>=1) inc(f[i-1][x+2][k],1ll*f[i][x][k]*y%P*y%P);
}
}
}
int ans=0;
for (int i=m;i<=n*n;i++) inc(ans,f[1][n][i]);
cout<<ans;
return 0;
}
#189 stat(动态规划)的更多相关文章
- 增强学习(三)----- MDP的动态规划解法
上一篇我们已经说到了,增强学习的目的就是求解马尔可夫决策过程(MDP)的最优策略,使其在任意初始状态下,都能获得最大的Vπ值.(本文不考虑非马尔可夫环境和不完全可观测马尔可夫决策过程(POMDP)中的 ...
- 简单动态规划-LeetCode198
题目:House Robber You are a professional robber planning to rob houses along a street. Each house has ...
- C站投稿189网盘视频源(UP主篇)
C站投稿189网盘视频源(UP主篇) 现在C站(吐槽弹幕网)的视频来源基本靠的都是189网盘,比如番剧区的每个视频基本来源于此,不像AB两站,拥有自己的资源服务器,为啥呢?没钱啊.都是外来的视频.本站 ...
- 动态规划 Dynamic Programming
March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: ...
- 动态规划之最长公共子序列(LCS)
转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...
- C#动态规划查找两个字符串最大子串
//动态规划查找两个字符串最大子串 public static string lcs(string word1, string word2) { ...
- C#递归、动态规划计算斐波那契数列
//递归 public static long recurFib(int num) { if (num < 2) ...
- 动态规划求最长公共子序列(Longest Common Subsequence, LCS)
1. 问题描述 子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串 cnblogs belong 比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与 ...
- 【BZOJ1700】[Usaco2007 Jan]Problem Solving 解题 动态规划
[BZOJ1700][Usaco2007 Jan]Problem Solving 解题 Description 过去的日子里,农夫John的牛没有任何题目. 可是现在他们有题目,有很多的题目. 精确地 ...
随机推荐
- 深入理解Spring Boot数据源与连接池原理
Create by yster@foxmail.com 2018-8-2 一:开始 在使用Spring Boot数据源之前,我们一般会导入相关依赖.其中数据源核心依赖就是spring‐boot‐s ...
- Python-os模块-60
os 模块: 和操作系统打交道的模块 os模块是与操作系统交互的一个接口 os.makedirs('dirname1/dirname2') 可生成多层递归目录 os.removedirs('dirna ...
- Tarjan算法(缩点)
因为最近在学2sat,需要学习前置技能—Tarjan算法,所以花了一天的时间学习这个算法 算法步骤: 1.从一个点开始dfs,并加入栈 2.如果下一个点没有到过,跳到第一步 3.如果下一个点到过,并且 ...
- 同步和异步概念(由DZW前端框架引发的百度地图api无法加载问题总结)
首先概念: 在计算机领域,同步就是指一个进程在执行某个请求的时候,若该请求需要一段时间才能返回信息,那么这个进程将会一直等待下去,直到收到返回信息才继续执行下去:异步是指进程不需要一直等下去,而是继续 ...
- p67交换幺环为整环的充要条件
如何理解并且证明这个定理?谢谢 (0)是素理想,也是就是说,只要ab∈(0)就有a∈(0)或者b∈(0) 这等价于说 ab=0就有a=0或b=0. 它这里给的证明是什么意思呢?它是利用了素理想的等价刻 ...
- Innodb 实现高并发、redo/undo MVCC原理
一.并发控制 因为并发情况下有可能出现不同线程对同一资源进行变动,所以必须要对并发进行控制以保证数据的同一与安全. 可以参考CPython解释器中的GIL全局解释器锁,所以说python中没有 ...
- latex中插入eps文件
\documentclass{article} \usepackage{graphicx}\usepackage{epstopdf} \begin{document}\begin{figure} \ ...
- ES5与ES6的小差异
ES5与ES6的小差异 变量的定义 ES6与ES5的区别 ES5: <script> console.log(username); var username; var username = ...
- 架构 规则引擎 quartz
通向架构师的道路(第五天)之tomcat集群-群猫乱舞-云栖社区-阿里云https://yq.aliyun.com/articles/259343 商业规则引擎和开源规则引擎的测试对比 - qq_39 ...
- PHPer未来路在何方...
PHP 从诞生到现在已经有20多年历史,从Web时代兴起到移动互联网退潮,互联网领域各种编程语言和技术层出不穷, Node.js . GO . Python 不断地在挑战 PHP 的地位.这些技术的推 ...