迭代加深dfs

每次控制序列的长度,依次加深搜索

有几个剪枝:

  • 优化搜索顺序,从大往下枚举i, j这样能够让序列中的数尽快逼近n
  • 对于不同i,j和可能是相等的,在枚举的时候用过的数肯定不会再被填上所以可以去重(记得回溯)
#include <iostream>
#include <cstring>
#include <cstdio>
#define INF 0x3f3f3f3f
using namespace std;
typedef long long ll;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
int X = 0, w = 0; char ch = 0;
while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
return w ? -X : X;
}
inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
template<typename T>
inline T max(T x, T y, T z){ return max(max(x, y), z); }
template<typename T>
inline T min(T x, T y, T z){ return min(min(x, y), z); }
template<typename A, typename B, typename C>
inline A fpow(A x, B p, C yql){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % yql)if(p & 1)ans = 1LL * x * ans % yql;
return ans;
}
const int N = 1005;
int n, a[N], depth;
bool vis[N]; bool dfs(int cur){
if(cur == depth + 1){
return a[depth] == n;
}
for(int i = cur - 1; i >= 1; i --){
for(int j = i; j >= 1; j --){
if(a[i] + a[j] > a[cur - 1] && !vis[a[i] + a[j]]){
a[cur] = a[i] + a[j];
vis[a[cur]] = true;
if(dfs(cur + 1)) return true;
vis[a[cur]] = false;
}
}
}
return false;
} int main(){ while(scanf("%d", &n) != EOF && n){
for(int i = 1; ; i ++){
memset(vis, 0, sizeof vis);
memset(a, 0, sizeof a);
a[1] = 1;
depth = i;
if(dfs(2)){
for(int j = 1; j < depth; j ++)
printf("%d ", a[j]);
printf("%d\n", a[depth]);
break;
}
}
}
return 0;
}

POJ 2245 Addition Chains(算竞进阶习题)的更多相关文章

  1. POJ 2449 Remmarguts' Date (算竞进阶习题)

    A* + dijkstra/spfa 第K短路的模板题,就是直接把最短路当成估价函数,保证估价函数的性质(从当前状态转移的估计值一定不大于实际值) 我们建反图从终点跑最短路,就能求出从各个点到终点的最 ...

  2. POJ 1015 Jury Compromise (算竞进阶习题)

    01背包 我们对于这类选或者不选的模型应该先思考能否用01背包来解. 毫无疑问物体的价值可以看成最大的d+p值,那么体积呢?题目的另一个限制条件是d-p的和的绝对值最小,这启发我们把每个物体的d-p的 ...

  3. POJ 1821 Fence (算竞进阶习题)

    单调队列优化dp 我们把状态定位F[i][j]表示前i个工人涂了前j块木板的最大报酬(中间可以有不涂的木板). 第i个工人不涂的话有两种情况: 那么F[i - 1][j], F[i][j - 1]就成 ...

  4. POJ 3974 Palindrome (算竞进阶习题)

    hash + 二分答案 数据范围肯定不能暴力,所以考虑哈希. 把前缀和后缀都哈希过之后,扫描一边字符串,对每个字符串二分枚举回文串长度,注意要分奇数和偶数 #include <iostream& ...

  5. POJ 1966 Cable TV Network (算竞进阶习题)

    拆点+网络流 拆点建图应该是很常见的套路了..一张无向图不联通,那么肯定有两个点不联通,但是我们不知道这两个点是什么. 所以我们枚举所有点,并把每个点拆成入点和出点,每次把枚举的两个点的入点作为s和t ...

  6. POJ 3074 Sudoku(算竞进阶习题)

    二进制优化+dfs 话说这题数据中真的丧心病狂..不加inline还过不去.. 因为不会DLX只好用二进制来优化了...万万没想到还是低空飘过 我们在行.列.格分别用一个9位二进制常数来记录什么数能放 ...

  7. POJ 3460 Booksort(算竞进阶习题)

    IDA* 这题真不会写..估价函数太巧妙了.. 按照lyd神牛的说法我们把a[i+1]=a[i]+1记为正确后继,反之则记为错误后继 那么考虑最优的一次交换区间,至多能够纠正三个错误后继,所以我们统计 ...

  8. POJ 3322 Bloxorz(算竞进阶习题)

    bfs 标准广搜题,主要是把每一步可能的坐标都先预处理出来,会好写很多 每个状态对应三个限制条件,x坐标.y坐标.lie=0表示直立在(x,y),lie=1表示横着躺,左半边在(x,y),lie=2表 ...

  9. POJ 3667 Hotel(算竞进阶习题)

    线段树区间染色 题目要求最大的连续段的左端点,我们在查询的时候返回最左端即可,注意查找顺序,应该从左到右!! 另外这类染色的push_down其实比较简单,直接染成上一层的标记即可 push_up和连 ...

随机推荐

  1. js实现活动倒计时

    let startTime = 1527647143949; // 开始时间 var time = new Countdown('timer',startTime); function Countdo ...

  2. xadmin集成DjangoUeditor

    1.安装 安装DjangoUeditor 1)去GitHub上面下载djangoueditor源码包(https://github.com/twz915/DjangoUeditor3)   然后进入源 ...

  3. sql面试学到新内容

    1.事物的保存点 MYSQL可以让我们对事务进行部分回滚,就是在事务里调用SAVEPOINT语句来设置一些命名标记.如果想要回滚到那个标记点位置,需要使用ROLLBACK语句来指定哪个保存点. mys ...

  4. python线程中的全局变量与局部变量

    在python多线程开发中,全局变量是多个线程共享的数据,局部变量是各自线程的,非共享的. 如下几种写法都是可以的: 第一种:将列表当成参数传递给线程 from threading import Th ...

  5. JAVA项目中的常用的异常处理情况

    NO.1 java.lang.NullPointerException 这个异常比较容易遇到,此异常的解释是“程序遇上了空指针”,简单地说就是调用了未经初始化的对象或者是不存在的对象,这个错误经常出现 ...

  6. MySQL 高可用性—keepalived+mysql双主

    MySQL 高可用性—keepalived+mysql双主(有详细步骤和全部配置项解释) - 我的博客 - CSDN博客https://blog.csdn.net/qq_36276335/articl ...

  7. 开发神器之phpstorm破解与日常使用

    PhpStorm 是 JetBrains 公司开发的一款商业的 PHP 集成开发工具,旨在提高用户效率,可深刻理解用户的编码,提供智能代码补全,快速导航以及即时错误检查. PhpStorm可随时帮助用 ...

  8. mysql中的几种日志了解

    前言 MySQL中有以下日志文件,分别是: 1:重做日志(redo log) 2:回滚日志(undo log) 3:二进制日志(binlog) 4:错误日志(errorlog) 5:慢查询日志(slo ...

  9. npm install、npm install --save与npm install --save-dev区别

    npm install X: 会把X包安装到node_modules目录中 不会修改package.json 之后运行npm install命令时,不会自动安装X npm install X –sav ...

  10. vue-axios的application/x-www-form-urlencod的post请求无法解析参数

    vue-axios的post会先将对象转为json然后再根据headers的设置再转一次格式,可以将参数先用qs.stringify()转一次再传输