bzoj1831 逆序对 (dp+树状数组)
注意到,所有的-1应该是一个不降的序列,否则不会更优
那就先求出来不是-1的的逆序对个数,然后设f[i][j]表示第i个-1放成j的前i个-1带来的最小逆序对数量
这个可以树状数组来求
#include<bits/stdc++.h>
#define pa pair<int,int>
#define CLR(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
const int maxn=1e4+,maxk=; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} int f[maxn][maxk],tr[maxn],a[maxn],b[maxn],N,K,M; inline int lowbit(int x){return x&(-x);}
inline void add(int x,int y){
for(;x<=K;x+=lowbit(x)) tr[x]+=y;
}
inline int query(int x){
int re=;for(;x;x-=lowbit(x)) re+=tr[x];return re;
} int main(){
//freopen("","r",stdin);
int i,j,k;
N=rd(),M=,K=rd();
int ans=;
for(i=;i<=N;i++){
a[i]=rd();
if(a[i]==-) b[++M]=i;
else{
ans+=query(K)-query(a[i]);
add(a[i],);
}
}
CLR(tr,);
for(i=,j=;i<=M;i++){
for(;j<=b[i];j++){
if(a[j]!=-) add(a[j],);
}
for(k=;k<=K;k++)
f[i][k]+=query(K)-query(k);
}
CLR(tr,);
for(i=M,j=N;i;i--){
for(;j>=b[i];j--){
if(a[j]!=-) add(a[j],);
}
for(k=;k<=K;k++)
f[i][k]+=query(k-);
}
for(i=;i<=M+;i++){
for(j=;j<=K;j++){
int mi=1e9;
for(k=;k<=j;k++){
mi=min(mi,f[i-][k]);
}
f[i][j]+=mi;
}
}
printf("%d\n",f[M+][K]+ans);
return ;
}
bzoj1831 逆序对 (dp+树状数组)的更多相关文章
- AcWing 107. 超快速排序(归并排序 + 逆序对 or 树状数组)
在这个问题中,您必须分析特定的排序算法----超快速排序. 该算法通过交换两个相邻的序列元素来处理n个不同整数的序列,直到序列按升序排序. 对于输入序列9 1 0 5 4,超快速排序生成输出0 1 4 ...
- 【BZOJ 3295】动态逆序对 - 分块+树状数组
题目描述 给定一个1~n的序列,然后m次删除元素,每次删除之前询问逆序对的个数. 分析:分块+树状数组 (PS:本题的CDQ分治解法见下一篇) 首先将序列分成T块,每一块开一个树状数组,并且先把最初的 ...
- Bzoj 3295: [Cqoi2011]动态逆序对 分块,树状数组,逆序对
3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 2886 Solved: 924[Submit][Stat ...
- Day2:T4求逆序对(树状数组+归并排序)
T4: 求逆序对 A[I]为前缀和 推导 (A[J]-A[I])/(J-I)>=M A[j]-A[I]>=M(J-I) A[J]-M*J>=A[I]-M*I 设B[]=A[]-M*( ...
- P3157 [CQOI2011]动态逆序对(树状数组套线段树)
P3157 [CQOI2011]动态逆序对 树状数组套线段树 静态逆序对咋做?树状数组(别管归并QWQ) 然鹅动态的咋做? 我们考虑每次删除一个元素. 减去的就是与这个元素有关的逆序对数,介个可以预处 ...
- hdu 4911 求逆序对数+树状数组
http://acm.hdu.edu.cn/showproblem.php?pid=4911 给定一个序列,有k次机会交换相邻两个位置的数,问说最后序列的逆序对数最少为多少. 实际上每交换一次能且只能 ...
- POJ2299逆序对模板(树状数组)
题目:http://poj.org/problem?id=2299 只能相邻两个交换,所以交换一次只会减少一个逆序对.所以交换次数就是逆序对数. ps:原来树状数组还可以记录后边lowbit位的部分和 ...
- 【Luogu】P3157动态逆序对(树状数组套主席树)
题目链接 md第一道在NOILinux 下用vim做的紫题.由于我对这个操作系统不是很熟悉,似乎有什么地方搞错了,md调死.(我还打了两遍代码,调了两个小时) 但是这道题并不难,就是树状数组套上主席树 ...
- BZOJ3295 动态逆序对(树状数组套线段树)
[Cqoi2011]动态逆序对 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 6058 Solved: 2117[Submit][Status][D ...
随机推荐
- spring aop学习记录
许多AOP框架,比较常用的是Spring AOP 与AspectJ.这里主要学习的Spring AOP. 关于AOP 日志.事务.安全验证这些通用的.散步在系统各处的需要在实现业务逻辑时关注的事情称为 ...
- jquery操作复选框(checkbox)的一些小技巧总结
1.获取单个checkbox选中项(三种写法) //第一种 $("input:checkbox:checked").val() //第二种 $("input:[type= ...
- 调整分区大小 转载--------------http://blog.csdn.net/perfectzq/article/details/73606119
centos7重新调整分区大小 centos 7 调整 root 和 home 的容量大小 查看磁盘的空间大小: df -h 备份/home : cp -r /home/ homebak/ 卸载 ...
- 模态框 modal data-toggle data-target
模态框 modal data-toggle data-target 1. Data-*属性 模态框(modal) 触发事件(data-toggle) 触发对象data-target(ID 或类) ...
- lombok 使用 Idea
Lombok 是一种 Java™ 实用工具,可用来帮助开发人员消除 Java 的冗长,尤其是对于简单的 Java 对象(POJO).它通过注解实现这一目的.import lombok.Getter;i ...
- MySQL系列:数据表基本操作(2)
1. 指定数据库 mysql> use portal; 2. 数据库表基本操作 2.1 查看数据表 mysql> show tables; +------------------+ | T ...
- NLP的原理,框架及具体实例
1. 什么是NLP 所谓NLP就是自然语言处理,即计算机识别人的自然沟通语言,将人的语言转换成表达含义相同的文字.因为NLP的目的是将人和计算机通过自然语言沟通成为可能,而人最方便的沟通是通过语音发声 ...
- 老男孩python学习自修第十一天【内置函数】
1.基本内置函数 help() 帮助文档 dir() 列出当前文件的所有变量和方法 vars() 列出当前文件的所有变量及其值 type() 返回变量的类型 id() 返回变量的内存地址 len() ...
- 初识Xml。
/* * 一.Xml? * * 1.是什么? * Extensible markup Language 可拓展标记性语言 * 功能是 储存数据 * 1.配置文件 * 2.在网络中传输数据 * xml和 ...
- string.Format出现异常:输入字符串的格式不正确 Exception during StringFormat
错误信息:Exception during StringFormat:输入字符串的格式不正确 “System.FormatException”类型的未经处理的异常在 mscorlib.dll 中发生 ...