原题,而且还是CCF自己的

考虑对于一段最长不上升序列,无论如何都至少有序列第一个数的贡献,可以知道,这个贡献是可以做到且最少的

然后对于序列最后一位,也就是最小的那一个数,可以和后面序列拼起来的就拼起来,所以后面的序列需要补偿的贡献就是差分

简化一下, \(ans=\sum_{i=1}^n\max\{0,(a_i-a_{i-1})\}\)

#include<bits/stdc++.h>
#define ui unsigned int
#define ll long long
#define db double
#define ld long double
#define ull unsigned long long
#define ft first
#define sd second
#define pb(a) push_back(a)
#define mp(a,b) std::make_pair(a,b)
#define REP(a,b,c) for(register int a=(b),a##end=(c);a<=a##end;++a)
#define DEP(a,b,c) for(register int a=(b),a##end=(c);a>=a##end;--a)
const int MAXN=100000+10;
int h[MAXN],n;
ll ans;
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char ch='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(ch!='\0')putchar(ch);
}
template<typename T> inline bool chkmin(T &x,T y){return y<x?(x=y,true):false;}
template<typename T> inline bool chkmax(T &x,T y){return y>x?(x=y,true):false;}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
int main()
{
freopen("road.in","r",stdin);
freopen("road.out","w",stdout);
read(n);
REP(i,1,n)read(h[i]),ans+=max(0,h[i]-h[i-1]);
write(ans,'\n');
return 0;
}

【比赛】NOIP2018 铺设道路的更多相关文章

  1. 题解【洛谷P5019】[NOIP2018]铺设道路

    题目描述 春春是一名道路工程师,负责铺设一条长度为 \(n\) 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 \(n\) 块首尾相连的区域,一开始,第 \(i\) 块区域下陷的深度 ...

  2. luogu5019 [NOIp2018]铺设道路 (贪心)

    和NOIp2013 积木大赛一模一样 我在堆一格的时候,我把它尽量地往右去延伸 于是如果对于一个i,a[i-1]<a[i],那i在之前一定只堆过a[i-1]那么多,所以要再堆a[i]-a[i-1 ...

  3. [NOIp2018]铺设道路 贪心

    LG传送门 考场上写的\(O(nlogn)\)做法,具体思想是把深度从低到高排个序,开一个标记数组,每次加入的时候标记当前位置并判断:如果当前加入的位置两边都被标记过,则下次的贡献-1,若两边都没有被 ...

  4. [NOIp2013提高组]积木大赛/[NOIp2018提高组]铺设道路

    [NOIp2013提高组]积木大赛/[NOIp2018提高组]铺设道路 题目大意: 对于长度为\(n(n\le10^5)\)的非负数列\(A\),每次可以选取一个区间\(-1\).问将数列清零至少需要 ...

  5. @NOIP2018 - D1T1@ 铺设道路

    目录 @题目描述@ @考场上的思路@ @比较正常的题解@ @题目描述@ 春春是一名道路工程师,负责铺设一条长度为 n 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 n 块首尾相连的 ...

  6. 洛谷P5019 [NOIP2018 提高组] 铺设道路

    题目描述 春春是一名道路工程师,负责铺设一条长度为 n 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 n 块首尾相连的区域,一开始,第 i 块区域下陷的深度为 di. 春春每天可以 ...

  7. NOIP2018Day1T1 铺设道路

    题目描述 春春是一名道路工程师,负责铺设一条长度为 \(n\) 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 \(n\) 块首尾相连的区域,一开始,第 \(i\) 块区域下陷的深度 ...

  8. 洛谷 P5019 铺设道路

    题目描述 春春是一名道路工程师,负责铺设一条长度为 \(n\) 的道路. 铺设道路的主要工作是填平下陷的地表.整段道路可以看作是 \(n\) 块首尾相连的区域,一开始,第 \(i\) 块区域下陷的深度 ...

  9. NOIP2018D1T1 铺设道路

    原题:NOIP2013D1T1 积木大赛 题目地址:P5019 铺设道路 思路:玄学瞎搞 将每块区域插入一个小根堆,这里的小根堆用优先队列实现,即运用一个 \(pair\) , \(first\) 为 ...

随机推荐

  1. lower_bound函数与upper_bound函数

    头文件 : algorithm vector<int>a a中的元素必须升序,用的是二分 lower_bound(a.begin(),a.end(),k) 返回a容器中,最右边的小于等于k ...

  2. hdu 1730 Nim博弈

    题目来源:http://acm.hdu.edu.cn/showproblem.php?pid=1730 Nim博弈为:n堆石子,每个人可以在任意一堆中取任意数量的石子 n个数异或值为0就后手赢,否则先 ...

  3. iOS UICollectionView 在滚动时停在某个item位置上

    方法一:实现UIScrollView的代理,然后实现下面这个方法 #pragma mark - UIScrollViewDelegate//预计出大概位置,经过精确定位获得准备位置- (void)sc ...

  4. java开发中使用枚举表述数据字典

    一.用枚举表述数据字典 1.代码: package com.inspire.jdk.caculate; /** * Created by yaming * 用枚举表述常量数据字段 */ public ...

  5. 面向对象设计的SOLID原则、迪米特法则

    SPR(The Single Responsibility Principle):单一责任原则 OCP(The Open Closed Principle):开放封闭原则 LSP(The Liskov ...

  6. 如何入门vue之二

    学习完指令之后我们需要学习的就是组件. 在学习组件前我们要了解一下 methods 用来处理事件的. computed用来计算属性  他就是类似于data一样只不过是动态的处理数据 里面写的方法当成属 ...

  7. findBugs安装

    点击“Help->InstallNew Software”,如下图所示: 2 接着如下图所示: 3 Name”输入“findBugs”,“Location”输入“http://findbugs. ...

  8. day 7-3 僵尸进程,孤儿进程与守护进程

    一.基本定义 正常情况下,子进程是通过父进程创建的,子进程在创建新的进程.子进程的结束和父进程的运行是一个异步过程,即父进程永远无法预测子进程 到底什么时候结束. 当一个 进程完成它的工作终止之后,它 ...

  9. Python时间的简单使用

    1.time.strptime(string[, format]),string -- 时间字符串.format -- 格式化字符串.返回struct_time对象.     把字符串转换为时间格式, ...

  10. Python OpenCV人脸识别案例

    ■环境 Python 3.6.0 Pycharm 2017.1.3 ■库.库的版本 OpenCV 3.4.1 (cp36) ■haarcascades下载 https://github.com/ope ...