P4781 【模板】拉格朗日插值

证明 :https://wenku.baidu.com/view/0f88088a172ded630b1cb6b4.html

http://www.ebola.pro/article/notes/Lagrange

#include<bits/stdc++.h>
using namespace std;
#define mod 998244353
#define ll long long
#define maxn 2345
ll n,k,x[maxn],y[maxn],z,m,ans;
ll qpow(ll a,ll b)
{
ll re=1;
while(b)
{
if(b%2)re=(re*a)%mod;
a=(a*a)%mod;
b>>=1;
}
return re;
}
int main()
{
scanf("%lld%lld",&n,&k);
for(int i=1; i<=n; i++)
scanf("%lld%lld",&x[i],&y[i]);
for(int i=1; i<=n; i++)
{
z=y[i],m=1;
for(int j=1; j<=n; j++)
{
if(i==j)continue;
z=(z*(k-x[j])%mod+mod)%mod;
m=(m*(x[i]-x[j])%mod+mod)%mod;
}
ans=(ans+z*qpow(m,mod-2)%mod+mod)%mod;
}
printf("%lld\n",ans);
return 0;
}

  

P4781 【模板】拉格朗日插值的更多相关文章

  1. CF622F——自然数幂和模板&&拉格朗日插值

    题意 求 $ \displaystyle \sum_{i=1}^n i^k \ mod (1e9+7), n \leq 10^9, k \leq 10^6$. CF622F 分析 易知答案是一个 $k ...

  2. luogu P4781 【模板】拉格朗日插值

    嘟嘟嘟 本来以为拉格朗日插值是一个很复杂的东西,今天学了一下才知道就是一个公式-- 我们都知道\(n\)个点\((x_i, y_i)\)可以确定唯一一个最高次为\(n - 1\)的多项式,那么现在我们 ...

  3. Luogu P4781【模板】拉格朗日插值

    洛谷传送门 板题-注意一下求多个数的乘积的逆元不要一个个快速幂求逆元,那样很慢,时间复杂度就是O(n2log)O(n^2log)O(n2log).直接先乘起来最后求一次逆元就行了.时间复杂度为O(nl ...

  4. 【Luogu4781】【模板】拉格朗日插值

    [Luogu4781][模板]拉格朗日插值 题面 洛谷 题解 套个公式就好 #include<cstdio> #define ll long long #define MOD 998244 ...

  5. LG4781 【模板】拉格朗日插值

    题意 题目描述 由小学知识可知,$n$个点$(x_i,y_i)$可以唯一地确定一个多项式 现在,给定$n$个点,请你确定这个多项式,并将$k$代入求值 求出的值对$998244353$取模 输入输出格 ...

  6. Luogu 4781 【模板】拉格朗日插值

    模板题. 拉格朗日插值的精髓在于这个公式 $$f(x) = \sum_{i = 1}^{n}y_i\prod _{j \neq i}\frac{x - x_i}{x_j - x_i}$$ 其中$(x_ ...

  7. LG4781 【模板】拉格朗日插值 和 JLOI2016 成绩比较

    [模板]拉格朗日插值 题目描述 由小学知识可知,$n$个点$(x_i,y_i)$可以唯一地确定一个多项式 现在,给定$n$个点,请你确定这个多项式,并将$k$代入求值 求出的值对$998244353$ ...

  8. fold算法(拉格朗日插值)

    如果打表发现某个数列: 差分有限次之后全为0 例如: 2017新疆乌鲁木齐ICPC现场赛D题 ,,,,,,,,,,…… [2018江苏南京ICPC现场赛也有这样的题目] 那么可以使用以下黑科技计算出第 ...

  9. 拉格朗日插值&&快速插值

    拉格朗日插值 插值真惨 众所周知$k+1$个点可以确定一个$k$次多项式,那么插值就是通过点值还原多项式的过程. 设给出的$k+1$个点分别是$(x_0,y_0),(x_1,y_1),...,(x_k ...

随机推荐

  1. AD9361寄存器配置顺序,循环模式,自收自发

    :] cmd_data; :] index; begin case(index) 'h000,8'h00};//set spi -- 'h3df,8'h01};//set init -- 'h037, ...

  2. 使用react 在页面上引用静态图片,图片不显示

    const url='../assets/logo.png'; <img src={url} alt=''/> 1.使用require <img src={require('../a ...

  3. MySQL----数据库练习

    一.多对多的正反向查询 class Class(models.Model): name = models.CharField(max_length=32,verbose_name="班级名& ...

  4. cf219d 基础换根法

    /*树形dp换根法*/ #include<bits/stdc++.h> using namespace std; #define maxn 200005 ]; int root,n,s,t ...

  5. SpringMVC 框架完成图片上传到项目路径操作

    /** * 保存添加 * * @return */ @RequestMapping(value = "taizhang/add.action", method = { Reques ...

  6. MyBatis - 7.MyBatis逆向 Generator

    MyBatis Generator: 简称MBG,是一个专门为MyBatis框架使用者定制的代码生成器,可以快速的根据表生成对应的映射文件,接口,以及bean类.支持基本的增删改查,以及QBC风格的条 ...

  7. Android Studio启动时出现unable to access android sdk add-on list

    目录 Android Studio First Run 检测 Android SDK 及更新,由于众所周知的原因,我们会「Unable to access Android SDK add-on lis ...

  8. rabbitmq3.7.5 centos7 集群部署笔记

    1. 准备3台 centos服务器  192.168.233.128    192.168.233.130    192.168.233.131 防火墙放开 集群端口, 这里一并把所有rabbitmq ...

  9. [转] Form 表单数据处理 简单教程 formidable 使用心得

    入门,高手见笑 表单数据一种是get方式, 另一种是post 方式 1.get方式 对于get方式,node处理起来非常简单 如以下代码: var urlParsed = url.parse(requ ...

  10. machinekey生成工具 v1.0 官方最新版

    http://www.33lc.com/soft/66056.html 电信下载 广东电信下载 厦门电信下载 湖北电信下载 江苏电信下载 网通下载 陕西网通下载 山东网通下载 甘肃网通下载 山西网通下 ...