<题目链接>

题目大意:

给你一张图,问你其中没有边重合的最短路径有多少条。

解题分析:

建图的时候记得存一下链式后向边,方便寻找最短路径,然后用Dijkstra或者SPFA跑一遍最短路,从终点开始DFS,找出最短路径上所有的边,然后将其加入网络,所有边的容量置为1,以起点为源点,终点为汇点,跑一遍最大流,求出的结果即为最短路的数量。

Dijkstra+Dinic版:

 #include <iostream>
 #include <cstdio>
 #include <cstring>
 #include <queue>
 #include <algorithm>
 using namespace std;

 ;
 ;
 const int INF = 0x3f3f3f3f;

 int n, m, st, ed, cnt, cnt1;
 int head[N], head1[N], dep[N], tail[N];
 bool vis[N];

 struct Edge{
     int u, v, w, next, next1;
 }edge[M<<], edge1[M<<];

 struct Node{
     int index,dist;
     bool operator < (const Node &tmp )const{
         return dist>tmp.dist;
     }
 }node[M<<];

 void init(){
     cnt = ,cnt1 = ;
     memset(head, -, sizeof head);
     memset(head1, -, sizeof head1);
     memset(tail, -, sizeof tail);
 }
 void addedge(int u, int v, int w){     //建图,跑最短路
     edge[cnt].u = u; edge[cnt].v = v;
     edge[cnt].w = w; edge[cnt].next = head[u];
     head[u] = cnt;
     edge[cnt].next1 = tail[v];     //tail[]数组相当于是反向的head[]数组,链式后向边,用来寻找最短路径上的边
     tail[v] = cnt++;
 }
 void addedge1(int u, int v, int w){    //建图,跑最大流
     edge1[cnt1].u = u; edge1[cnt1].v = v;
     edge1[cnt1].w = w; edge1[cnt1].next = head1[u];
     head1[u] = cnt1++;           //正向弧

     edge1[cnt1].v = u; edge1[cnt1].u = v;
     edge1[cnt1].w = ; edge1[cnt1].next = head1[v];
     head1[v] = cnt1++;           //反向弧
 }

 int Dij(){
     priority_queue<Node>q;
     ;i<=n;i++)
         vis[i] = false,node[i].index=i,node[i].dist=INF;
     node[st].dist=;
     q.push(node[st]);
     while(!q.empty()){
         int u=q.top().index;q.pop();
         if(vis[u])continue;
         vis[u]=true;
         for(int i=head[u];~i;i=edge[i].next){
             int v = edge[i].v;
             if(node[v].dist>node[u].dist+edge[i].w){
                 node[v].dist = node[u].dist+edge[i].w;
                 q.push(node[v]);
             }
         }
     }
     return node[ed].dist!= INF;
 }

 void dfs(int v){    //寻找最短路中的所有边,并将其加入网络
     ; i = edge[i].next1){
         int u = edge[i].u;   //u为该后向边的起始点
         if(node[u].dist+edge[i].w == node[v].dist){   //判断该边是否为最短路中的边
             addedge1(u, v, );    //如果是的话,就加入网络中,跑最大流
             if(!vis[u]){
                 vis[u] = ;
                 dfs(u);
             }
         }
     }
 }

 /*--    Dinic    --*/
 bool bfs(){
     memset(vis, , sizeof vis);
     memset(dep, -, sizeof dep);
     queue<int> q;
     q.push(st);
     vis[st] = ;
     dep[st] = ;
     while(!q.empty()){
         int cur = q.front();q.pop();
         ; i = edge1[i].next){
             int v = edge1[i].v;
             ){
                 dep[v] = dep[cur]+;
                 vis[v] = ;
                 q.push(v);
             }
         }
     }
     ;   //如果dep[ed]!=-1,说明仍然存在增广路
 }

 int dfs1(int cur, int flow){
     if(cur == ed) return flow;
     ;
      && flow > res; i = edge1[i].next){
         int v = edge1[i].v;
          && dep[v] == dep[cur]+){
             int x = min(edge1[i].w, flow-res);
             int f = dfs1(v, x);
             edge1[i].w-=f;
             edge1[i^].w+=f;
             res += f;
         }
     }
     ;
     return res;
 }

 int dinic(){
     ,res;
     while(bfs()){
         while(res = dfs1(st, INF)){
             sumflow += res;
         }
     }
     return sumflow;
 }
 /*--    Dinic    --*/

 int main(){
     int T; scanf("%d", &T);
     while(T--){
         init();
         scanf("%d%d", &n, &m);
         ; i < m; i++){
             int u, v, w;
             scanf("%d%d%d", &u, &v, &w);
             addedge(u, v, w);
         }
         scanf("%d%d", &st, &ed);
         ");    //跑最短路,如果st->ed不可达,则直接输出0
         else{
             memset(vis,false,sizeof(vis));    //注意,dijkstra要加上这一句,spfa则不用,因为spfa结束后,所有点的vis全部置为false
             dfs(ed);   //找到最短路中的所有边,并将其加入网络
             printf("%d\n",dinic());    //根据最短路所有的边求最大流
         }
     }
     ;
 }

SPFA+Dinic版:

 #include <iostream>
 #include <cstdio>
 #include <cstring>
 #include <queue>
 #include <algorithm>
 using namespace std;

 ;
 ;
 const int INF = 0x3f3f3f3f;

 int n, m, st, ed, cnt, cnt1;
 int head[N], head1[N], dis[N], dep[N], tail[N];
 bool vis[N];

 struct Edge{
     int u, v, w, next, next1;
 }edge[M<<], edge1[M<<];

 void init(){
     cnt = ,cnt1 = ;
     memset(head, -, sizeof head);
     memset(head1, -, sizeof head1);
     memset(tail, -, sizeof tail);
 }
 void addEdge1(int u, int v, int w){     //建图,跑最短路
     edge[cnt].u = u; edge[cnt].v = v;
     edge[cnt].w = w; edge[cnt].next = head[u];
     head[u] = cnt;
     edge[cnt].next1 = tail[v];     //tail[]数组相当于是反向的head[]数组,链式后向边,用来寻找最短路径上的边
     tail[v] = cnt++;
 }
 void addEdge2(int u, int v, int w){    //建图,跑最大流
     edge1[cnt1].u = u; edge1[cnt1].v = v;
     edge1[cnt1].w = w; edge1[cnt1].next = head1[u];
     head1[u] = cnt1++;           //正向弧

     edge1[cnt1].v = u; edge1[cnt1].u = v;
     edge1[cnt1].w = ; edge1[cnt1].next = head1[v];
     head1[v] = cnt1++;           //反向弧
 }

 int spfa(){
     queue<int> q;
     ; i <= n; i++)
         vis[i] = ,dis[i] = INF;
     vis[st] = ; dis[st] = ;
     q.push(st);
     while(!q.empty()){
         int cur = q.front();
         q.pop(); vis[cur] = ;
         ; i = edge[i].next)
         {
             int v = edge[i].v;
             if(dis[v] > dis[cur]+edge[i].w)
             {
                 dis[v] = dis[cur]+edge[i].w;
                 if(!vis[v])
                 {
                     vis[v] = ;
                     q.push(v);
                 }
             }
         }
     }
     return dis[ed] != INF;
 }

 void dfs(int v){    //寻找最短路中的所有边,并将其加入网络
     ; i = edge[i].next1){
         int u = edge[i].u;   //u为该后向边的起始点
         if(dis[u]+edge[i].w == dis[v]){   //判断该边是否为最短路中的边
             addEdge2(u, v, );    //如果是的话,就加入网络中,跑最大流
             if(!vis[u]){
                 vis[u] = ;
                 dfs(u);
             }
         }
     }
 }

 /*--    Dinic    --*/
 bool bfs(){
     memset(vis, , sizeof vis);
     memset(dep, -, sizeof dep);
     queue<int> q;
     q.push(st);
     vis[st] = ;
     dep[st] = ;
     while(!q.empty()){
         int cur = q.front();q.pop();
         ; i = edge1[i].next){
             int v = edge1[i].v;
             ){
                 dep[v] = dep[cur]+;
                 vis[v] = ;
                 q.push(v);
             }
         }
     }
     ;   //如果dep[ed]!=-1,说明仍然存在增广路
 }

 int dfs1(int cur, int flow){
     if(cur == ed) return flow;
     ;
      && flow > res; i = edge1[i].next){
         int v = edge1[i].v;
          && dep[v] == dep[cur]+){
             int x = min(edge1[i].w, flow-res);
             int f = dfs1(v, x);
             edge1[i].w-=f;
             edge1[i^].w+=f;
             res += f;
         }
     }
     ;
     return res;
 }

 int dinic(){
     ,res;
     while(bfs()){
         while(res = dfs1(st, INF)){
             sumflow += res;
         }
     }
     return sumflow;
 }
 /*--    Dinic    --*/

 int main(){
     int T; scanf("%d", &T);
     while(T--){
         init();
         scanf("%d%d", &n, &m);
         ; i < m; i++){
             int u, v, w;
             scanf("%d%d%d", &u, &v, &w);
             addEdge1(u, v, w);
         }
         scanf("%d%d", &st, &ed);
         ");    //跑最短路,如果st->ed不可达,则直接输出0
         else{
             dfs(ed);   //找到最短路中的所有边,并将其加入网络
             printf("%d\n",dinic());    //根据最短路所有的边求最大流
         }
     }
     ;
 }

2018-11-23

HDU 3416 Marriage Match IV 【最短路】(记录路径)+【最大流】的更多相关文章

  1. HDU 3416 Marriage Match IV (最短路建图+最大流)

    (点击此处查看原题) 题目分析 题意:给出一个有n个结点,m条单向边的有向图,问从源点s到汇点t的不重合的最短路有多少条,所谓不重复,意思是任意两条最短路径都不共用一条边,而且任意两点之间的边只会用一 ...

  2. hdu 3416 Marriage Match IV (最短路+最大流)

    hdu 3416 Marriage Match IV Description Do not sincere non-interference. Like that show, now starvae ...

  3. HDU 3416 Marriage Match IV (最短路径,网络流,最大流)

    HDU 3416 Marriage Match IV (最短路径,网络流,最大流) Description Do not sincere non-interference. Like that sho ...

  4. HDU 3416 Marriage Match IV (求最短路的条数,最大流)

    Marriage Match IV 题目链接: http://acm.hust.edu.cn/vjudge/contest/122685#problem/Q Description Do not si ...

  5. HDU 3416 Marriage Match IV(ISAP+最短路)题解

    题意:从A走到B,有最短路,问这样不重复的最短路有几条 思路:先来讲选有效边,我们从start和end各跑一次最短路,得到dis1和dis2数组,如果dis1[u] + dis2[v] + cost[ ...

  6. HDU 3416 Marriage Match IV(最短路,网络流)

    题面 Do not sincere non-interference. Like that show, now starvae also take part in a show, but it tak ...

  7. hdu 3416 Marriage Match IV 【 最短路 最大流 】

    求边不可重复的最短路条数 先从起点到终点用一次dijkstra,再从终点到起点用一次dijkstra,来判断一条边是否在最短路上 如果在,就将这条边的两个端点连起来,容量为1 再跑一下dinic(), ...

  8. HDU 3416 Marriage Match IV dij+dinic

    题意:给你n个点,m条边的图(有向图,记住一定是有向图),给定起点和终点,问你从起点到终点有几条不同的最短路 分析:不同的最短路,即一条边也不能相同,然后刚开始我的想法是找到一条删一条,然后光荣TLE ...

  9. HDU 3416 Marriage Match IV

    最短路+最大流 #include<cstdio> #include<cstring> #include<string> #include<cmath> ...

随机推荐

  1. ORACLE的数据类型的长度合集

    --  ORACLE的数据类型常用的数据库字段类型如下:字段类型 中文说明 限制条件 其它说明CHAR 固定长度字符串 最大长度2000 bytesVARCHAR2 可变长度的字符串 最大长度4000 ...

  2. windows+mysql集群搭建-三分钟搞定集群

    注:本文来源:  陈晓婵   <  windows+mysql集群搭建-三分钟搞定集群   > 一:mysql集群搭建教程-基础篇 计算机一级考试系统要用集群,目标是把集群搭建起来,保证一 ...

  3. Oracle12c Release1 安装图解(详解)

    Oracle12c Release1 安装图解(详解) Oracle12c 终于发布了,代号为 c,即为 Cloud(云),替代了网格 (Grid)运算. 我的机器基础环境:Windows8(x64) ...

  4. ctrl + alt + T无法启动终端

    kill -9 -1重新进入即可

  5. Winhex数据恢复学习笔记(四)

    睡不着,那就深夜写篇笔记打发一下不瞌睡,❥(^_-) 1.winhex在文件批量处理上主要是针对批量保存.打开.关闭,主要还是基于批量打开的其他一些操作,这里通过构造通配符来批量打开,列如 *符号 ? ...

  6. border画梯形

    <!doctype html><html lang="en"> <head>  <meta charset="UTF-8&quo ...

  7. Java 获取当前系统的时间

    获取当前系统的时间,每隔一秒,打印一次. import java.util.Date; public class TestDate { public static void main(String[] ...

  8. python unittest框架装饰器

    要说单元测试和UI自动化之间的是什么样的一个关系,说说我个人的一些心得体会吧,我并没有太多的这方面经验,由于工作本身就用的少,还有就是功能测试点点对于我这种比较懒惰的人来说,比单元测试复杂...思考单 ...

  9. ORA-12705

    1. 分析 ORA-12705是一个与nls 环境或者文件相关的错误,按照Oracle 官方的提示,要么是环境变量配置错误,要么是通过alter session 命令调整了错误的nls参数值,要么是n ...

  10. CSS3D写3d画廊滚动

    CSS样式表 *{ margin: 0; padding: 0; } .wrapper{ width: 800px; height: 600px; background: #87CEEB; margi ...