在日常的Java开发中,位运算使用的不多,使用的更多的是算数运算(+、-、*、/、%)、关系运算(<、>、<=、>=、==、!=)和逻辑运算(&&、||、!),所以相对来说对位运算不是那么熟悉,本文将以Java的位运算来详细介绍下位运算及其应用。

1、 位运算起源

  位运算起源于C语言的低级操作,Java的设计初衷是嵌入到电视机顶盒内,所以这种低级操作方式被保留下来。所谓的低级操作,是因为位运算的操作对象是二进制位,但是这种低级操作对计算机而言是非常简单直接,友好高效的。在简单的低成本处理器上,通常位运算比除法快得多,比乘法快几倍,有时比加法快得多。虽然由于较长的指令流水线和其他架构设计选择,现代处理器通常执行加法和乘法的速度与位运算一样快,但由于资源使用减少,位运算通常会使用较少的功率,所以在一些Java底层算法中,巧妙的使用位运算可以大量减少运行开销。

2、 位运算详解

  Java位运算细化划分可以分为按位运算和移位运算,见下表。

细化

符号

描述

运算规则

按位运算

&

两位都为1,那么结果为1

|

有一位为1,那么结果为1

~

~0 = 1,~1 = 0

^

异或

两位不相同,结果为1

移位运算

<<

左移

各二进制位全部左移N位,高位丢弃,低位补0

>>

右移

各二进制位全部右移N位,若值为正,则在高位插入 0,若值为负,则在高位插入 1

>>>

无符号右移

各二进制位全部右移N位,无论正负,都在高位插入0

  在进行位运算详解之前,先来普及下计算机中数字的表示方法。对于计算机而言,万物皆0、1,所有的数字最终都会转换成0、1的表示,有3种体现形式,分别是:原码、反码和补码

  原码:原码表示法在数字前面增加了一位符号位,即最高位为符号位,正数位该位为0,负数位该位为1.比如十进制的5如果用8个二进制位来表示就是00000101,-5就是10000101。

  反码:正数的反码是其本身,负数的反码在其原码的基础上,符号位不变,其余各个位取反。5的反码就是00000101,而-5的则为11111010。

  补码:正数的补码是其本身,负数的补码在其原码的基础上,符号位不变,其余各位取反,最后+1。即在反码的基础上+1。5的反码就是00000101,而-5的则为11111011。

  了解了这几个概念后,我们现在先记住一个结论,那就是在计算机系统中,数字一律用补码来表示、运算和存储,具体的原因可以看这篇文章的讨论,这里不做更多讨论,因为不是本文的重点。

2.1 与运算(&)

  规则:转为二进制后,两位为1,则结果为1,否则结果为0。

  举例:

十进制

二进制(正数原码、反码、补码一致)

10

00000000000000000000000000001010

&12

&00000000000000000000000000001100

=

=

8

00000000000000000000000000001000

十进制

二进制(原码)

-6

10000000000000000000000000000110

&-2

&10000000000000000000000000000010

十进制

二进制(反码)

-6

11111111111111111111111111111001

&-2

&11111111111111111111111111111101

十进制

二进制(补码)

-6

11111111111111111111111111111010

&-2

&11111111111111111111111111111110

=

=

-6

11111111111111111111111111111010

  最后的计算结果11111111111111111111111111111010还是补码的形式,要看其十进制,还需要先转成二进制原码。

  先转反码:11111111111111111111111111111010-1=11111111111111111111111111111001,得反码11111111111111111111111111111001。

  再转原码:在反码的基础上转原码,符号位不变,其他各位取反,得10000000000000000000000000000110。第一位1代表负数,后面0110转成十进制是6,得-6。

2.2 或运算(|)

  规则:转为二进制后,有一位为1,则结果为1,否则结果为0。

  举例:

十进制

二进制(正数原码、反码、补码一致)

10

00000000000000000000000000001010

|12

|00000000000000000000000000001100

=

=

14

00000000000000000000000000001110

十进制

二进制(原码)

-6

10000000000000000000000000000110

|-2

|10000000000000000000000000000010

十进制

二进制(反码)

-6

11111111111111111111111111111001

|-2

|11111111111111111111111111111101

十进制

二进制(补码)

-6

11111111111111111111111111111010

|-2

|11111111111111111111111111111110

=

=

-2

11111111111111111111111111111110

2.3 非运算(~)

  规则:转为二进制后,~0 = 1,~1 = 0。

  举例:

十进制

二进制(正数原码、反码、补码一致)

~7

~00000000000000000000000000000111

=

=

-8

11111111111111111111111111111000(补码需转换为原码)

  11111111111111111111111111111000-1得反码,可以把1000看成是0112,得反码11111111111111111111111111110111。根据反码得原码10000000000000000000000000001000。

十进制

二进制(原码)

~(-6)

~10000000000000000000000000000110

十进制

二进制(反码)

~(-6)

~11111111111111111111111111111001

十进制

二进制(补码)

~(-6)

~11111111111111111111111111111010

=

=

5

00000000000000000000000000000101(正数原码、反码、补码一致)

 

2.4 异或运算(^)

  规则:转为二进制后,两位不相同,结果为1,否则为0。

  举例:

十进制

二进制(正数原码、反码、补码一致)

15^2

00000000000000000000000000001111

^00000000000000000000000000000010

=

=

13

00000000000000000000000000001101

 

2.5 左移运算(<<)

  规则:转为二进制后,各二进制位全部左移N位,高位丢弃,低位补0。

  举例:

十进制

二进制(正数原码、反码、补码一致)

2<<2

00000000000000000000000000000010

=

0000000000000000000000000000001000

8

00000000000000000000000000001000

 

十进制

二进制(先取补码 再对补码操作位移)

-2<<2

10000000000000000000000000000010(原码)

11111111111111111111111111111101(反码)

11111111111111111111111111111110(补码)

1111111111111111111111111111111000

11111111111111111111111111111000(补码)

11111111111111111111111111110111(反码)

-8

10000000000000000000000000001000(原码)

 

2.6 右移运算(>>)

  规则:转为二进制后,各二进制位全部右移N位,若值为正,则在高位插入 0,若值为负,则在高位插入 1。

  举例:

十进制

二进制(正数原码、反码、补码一致)

2>>2

00000000000000000000000000000010

=

0000000000000000000000000000000010

0

00000000000000000000000000000000

 

十进制

二进制(先取补码 再对补码操作位移)

-6>>2

10000000000000000000000000000110(原码)

11111111111111111111111111111001(反码)

11111111111111111111111111111010(补码)

1111111111111111111111111111111010

11111111111111111111111111111110(补码)

11111111111111111111111111111101(反码)

-2

10000000000000000000000000000010(原码)

 

2.7 无符号右移运算(>>>)

  规则:转为二进制后,各二进制位全部右移N位,无论正负,都在高位插入0。

  举例:

十进制

二进制(先取补码 再对补码操作位移)

-1>>>1

10000000000000000000000000000001(原码)

11111111111111111111111111111110(反码)

11111111111111111111111111111111(补码)

011111111111111111111111111111111

01111111111111111111111111111111(补码)

01111111111111111111111111111110(反码)

溢出,只能表示到int的最大值2147483647

10000000000000000000000000000001(原码)

3、 应用

3.1 不用额外的变量实现两个数字互换

  见参考资料中的BitOperationTest,方法reverse通过三次异或操作完成了两个变量值的替换。

  证明很简单,我们只需要明白异或运算满足下面规律(实际不止如下规律):

  0^a = a,a^a = 0;

  a ^ b = b ^ a;

  a ^ b ^ c = a ^ (b ^ c) = (a ^ b) ^ c;

  a ^ b ^ a = b;

  假设a,b两个变量,经过如下步骤完成值交换:a=a^b,b=b^a,a=a^b。

  证明如下:

  因为a ^ b = b ^ a,又a=a^b,b=b^a。故b=b^a= b^ (a^b)=a。

  继续a=a^b,a=(a^b) ^ b^ (a^b),故a=b。完成值交换。

3.2 不用判断语句实现求绝对值

  公式如下:(a^(a>>31))-(a>>31)

  先整理一下使用位运算取绝对值的思路:若a为正数,则不变,需要用异或0保持的特点;若a为负数,则其补码为原码翻转每一位后+1,先求其原码,补码-1后再翻转每一位,此时需要使用异或1具有翻转的特点。

  任何正数右移31后只剩符号位0,最终结果为0,任何负数右移31后也只剩符号位1,溢出的31位截断,空出的31位补符号位1,最终结果为-1.右移31操作可以取得任何整数的符号位。

  那么综合上面的步骤,可得到公式。a>>31取得a的符号,若a为正数,a>>31等于0,a^0=a,不变;若a为负数,a>>31等于-1 ,a^-1翻转每一位。

3.3 判断一个数的奇偶性

  通过与运算判断奇偶数,伪代码如下:

  n&1 == 1?”奇数”:”偶数”

  奇数最低位肯定是1,而1的二进制最低位也是1,其他位都是0,所以所有奇数和1与运算结果肯定是1。

参考资料:

https://github.com/lingjiango/ConcurrentProgramPractice

https://en.wikipedia.org/wiki/Bitwise_operation

https://www.zhihu.com/question/20159860

Java基础-一文搞懂位运算的更多相关文章

  1. Java 基础 一文搞懂泛型

    本文将从以下四个方面来系统的讲解一下泛型,基本上涵盖了泛型的主体内容. 什么是泛型? 为什么要使用泛型? 如何使用泛型? 泛型的特性 1. 什么是泛型? 泛型的英文是Generics,是指在定义方法. ...

  2. Java基础语法(语法、位运算、JavaDoc等)

    一.注释.标识符.关键字 1.注释(comments) 平时我们编写代码,在代码量比较少的时候,我们还可以看懂自己编写的代码,但是当项目结构一旦复杂起来,我们就需要用到注释了! 注释并不会被程序执行, ...

  3. 一文搞懂所有Java集合面试题

    Java集合 刚刚经历过秋招,看了大量的面经,顺便将常见的Java集合常考知识点总结了一下,并根据被问到的频率大致做了一个标注.一颗星表示知识点需要了解,被问到的频率不高,面试时起码能说个差不多.两颗 ...

  4. Web端即时通讯基础知识补课:一文搞懂跨域的所有问题!

    本文原作者: Wizey,作者博客:http://wenshixin.gitee.io,即时通讯网收录时有改动,感谢原作者的无私分享. 1.引言 典型的Web端即时通讯技术应用场景,主要有以下两种形式 ...

  5. 基础篇|一文搞懂RNN(循环神经网络)

    基础篇|一文搞懂RNN(循环神经网络) https://mp.weixin.qq.com/s/va1gmavl2ZESgnM7biORQg 神经网络基础 神经网络可以当做是能够拟合任意函数的黑盒子,只 ...

  6. 三文搞懂学会Docker容器技术(下)

    接着上面一篇:三文搞懂学会Docker容器技术(上) 三文搞懂学会Docker容器技术(中) 7,Docker容器目录挂载 7.1 简介 容器目录挂载: 我们可以在创建容器的时候,将宿主机的目录与容器 ...

  7. 一文搞懂如何使用Node.js进行TCP网络通信

    摘要: 网络是通信互联的基础,Node.js提供了net.http.dgram等模块,分别用来实现TCP.HTTP.UDP的通信,本文主要对使用Node.js的TCP通信部份进行实践记录. 本文分享自 ...

  8. 一文搞懂指标采集利器 Telegraf

    作者| 姜闻名 来源|尔达 Erda 公众号 ​ 导读:为了让大家更好的了解 MSP 中 APM 系统的设计实现,我们决定编写一个<详聊微服务观测>系列文章,深入 APM 系统的产品.架构 ...

  9. 一文搞懂Google Navigation Component

    一文搞懂Google Navigation Component 应用中的页面跳转是一个常规任务, Google官方提供的解决方案是Android Jetpack的Navigation componen ...

随机推荐

  1. Javascript高级编程学习笔记(73)—— 表单(1)表单基础

    表单 JS最初的一个用途就是帮助服务器分担处理表单的责任 时至今日,虽然web应用以及JS都有了长足的发展,但是表单依然是现在web应用中比较重要的部分. 因为默认的表单控件很丑,所以有时候我们会使用 ...

  2. Javascript高级编程学习笔记(16)—— 引用类型(5) Function类型

    JS中许多有趣的地方都和函数脱不了联系 那么是什么让JS中的函数这么有趣呢? 我们一起来看看吧 Function类型 在JS中函数实际上就是对象,每个函数都是Function类型的实例,和JS的其他引 ...

  3. Ubuntu16.04.1 安装Nginx

    Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器. Nginx 是由 Igor Sysoev ...

  4. Kali学习笔记3:TCPDUMP详细使用方法

    Kali自带Wireshark,但一般的Linux系统是不带的,需要自行下载,并且过程略复杂 而纯字符界面的Linux系统无法使用Wireshark 但是,所有Linux系统都会安装TCPDUMP:一 ...

  5. LabVIEW(二):计数器应用

    1.计数器结构 —>Gate Output—> Counter Register —>Source 其中: Source:被计数的输入源信号 Gate:切断计数是否启动的门控信号 O ...

  6. mysql连接失败HikariPool错误

    1. mysql连接失败HikariPool错误 1.1. 异常 com.zaxxer.hikari.pool.HikariPool : HikariPool-1 - Exception during ...

  7. MRO

    在Python3里面,有多继承的时候,往往会出现调用Super失败的情况.Python里存在一种多继承 Super的调用顺序(C3算法),保证每个类调用一次. 体现:类名.__mro__ 使用Supe ...

  8. Asp.NetCoreWebApi图片上传接口(二)集成IdentityServer4授权访问(附源码)

    写在前面 本文地址:http://www.cnblogs.com/yilezhu/p/9315644.html 作者:yilezhu 上一篇关于Asp.Net Core Web Api图片上传的文章使 ...

  9. Django--缓存设置

    Django缓存机制 一. 缓存介绍 缓存是将一些常用的数据保存内存或者memcache中,在一定的时间内有人来访问这些数据时,则不再去执行数据库及渲染等操作,而是直接从内存或memcache的缓存中 ...

  10. 剑指offer例题分享--8

    前言:继续分享,加油! 面试题44: 代码如下: #include<iostream> #include<stdlib.h> using namespace std; int ...