(贪心 模拟?) codeVs1098 均分纸牌
有 N 堆纸牌,编号分别为 1,2,…, N。每堆上有若干张,但纸牌总数必为 N 的倍数。可以在任一堆上取若于张纸牌,然后移动。
移牌规则为:在编号为 1 堆上取的纸牌,只能移到编号为 2 的堆上;在编号为 N 的堆上取的纸牌,只能移到编号为 N-1 的堆上;其他堆上取的纸牌,可以移到相邻左边或右边的堆上。
现在要求找出一种移动方法,用最少的移动次数使每堆上纸牌数都一样多。
例如 N=4,4 堆纸牌数分别为:
① 9 ② 8 ③ 17 ④ 6
移动3次可达到目的:
从 ③ 取 4 张牌放到 ④ (9 8 13 10) -> 从 ③ 取 3 张牌放到 ②(9 11 10 10)-> 从 ② 取 1 张牌放到①(10 10 10 10)。
第一行N(N 堆纸牌,1 <= N <= 100)
第二行A1 A2 … An (N 堆纸牌,每堆纸牌初始数,l<= Ai <=10000)
输出至屏幕。格式为:
所有堆均达到相等时的最少移动次数。‘
4
9 8 17 6
3
#include<iostream>
using namespace std;
const int maxn = ;
int a[maxn];
int main(){
int n;
cin>>n;
int sum = ;
for(int i = ;i < n; i++){
cin>>a[i];
sum += a[i];
}
int ave = sum/n;
int num = ;
for(int i = ;i < n; i++){
if(a[i] > ave){
a[i+] += (a[i] - ave);
num++;
}
else if(a[i] < ave){
a[i+] -= (ave - a[i]);
num++;
}
}
cout<<num<<endl;
return ;
}
(贪心 模拟?) codeVs1098 均分纸牌的更多相关文章
- code vs 1098 均分纸牌(贪心)
1098 均分纸牌 2002年NOIP全国联赛提高组 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 黄金 Gold 题解 题目描述 Description 有 N 堆纸牌 ...
- NOIP2002 均分纸牌
题一 均分纸牌 (存盘名: NOIPG1) [问题描述] 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为: ...
- 【洛谷p1031】均分纸牌
[博客园的第一条随笔,值得纪念一下] 均分纸牌[传送门] 洛谷上的算法标签是 这道题是一道贪心题,过了四遍才过(蒟蒻有点废) 第一遍的时候考虑的非常少,只想到了求出平均数→求差值→从左往右加差值: 这 ...
- 洛谷 P1031 均分纸牌
P1031 均分纸牌 这道题告诉我们,对于实在想不出算法的题,可以大胆按照直觉用贪心,而且在考试中永远不要试着去证明贪心算法,因为非常难证,会浪费大量时间. (这就是你们都不去证的理由??) 这道题贪 ...
- 【题解】P1440 均分纸牌
均分纸牌 题目描述: 有\(N\)堆纸牌,编号分别为\(1,2,-,N\).每堆上有若干张,但纸牌总数必为\(N\)的倍数.可以在任一堆上取若干张纸牌,然后移动. 移牌规则为:在编号为\(1\)堆上取 ...
- 贪心+模拟 Codeforces Round #288 (Div. 2) C. Anya and Ghosts
题目传送门 /* 贪心 + 模拟:首先,如果蜡烛的燃烧时间小于最少需要点燃的蜡烛数一定是-1(蜡烛是1秒点一支), num[g[i]]记录每个鬼访问时已点燃的蜡烛数,若不够,tmp为还需要的蜡烛数, ...
- NOIP200205均分纸牌
均分纸牌 描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张 ...
- wikioi 1098 均分纸牌
题目描述 Description 有 N 堆纸牌,编号分别为 1,2,-, N.每堆上有若干张,但纸牌总数必为 N 的倍数.可以在任一堆上取若于张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取的纸 ...
- 洛谷P1368 均分纸牌(加强版)
P1368 均分纸牌(加强版) 题目描述 有 N 堆纸牌,编号分别为 1,2,…, N.每堆上有若干张,纸牌总数必为 N 的倍数.可以在任一堆上取1张纸牌,然后移动. 移牌规则为:在编号为 1 堆上取 ...
随机推荐
- LODOP 获取打印设计代码不带INIT初始化语句
前面的博文生成JS代码模版和文档式模版,生成的是带初始化语句的模版,如果想要打印多个,可以循环多个任务,什么是一个任务,可查看本博客相关博文:Lodop打印语句最基本结构介绍(什么是一个任务)一个任务 ...
- 梯度下降取负梯度的简单证明,挺有意思的mark一下
本文转载自:http://blog.csdn.net/itplus/article/details/9337515
- KKT条件
kkt条件背下来容易.理解上还有问题 主要是lambda≥0和lambda*f(x)=0这两个条件懵逼. 下面说明一下为什么 参考:https://blog.csdn.net/newthinker_w ...
- Multi-Targeting and Porting a .NET Library to .NET Core 2.0
Creating a new .NET Standard Project The first step for moving this library is to create a new .NET ...
- Codeforces Round #424 Div. 1
A:二分答案,从左往右考虑每个人,选尽量靠左的钥匙即可. #include<iostream> #include<cstdio> #include<cmath> # ...
- 51Nod 1344 走格子
参考自:https://www.cnblogs.com/ECJTUACM-873284962/p/6445381.html 1344 走格子 基准时间限制:1 秒 空间限制:131072 KB 分值: ...
- 初步了解HTML
超文本标记语言(英语:HyperText Markup Language,简称:HTML)是一种用于创建网页的标准标记语言. 您可以使用 HTML 来建立自己的 WEB 站点,HTML 运行在浏览器上 ...
- 用大O记号法测量算法的效率(Algorithm efficiency Asymptotic notation Big O notation)
为什么要了解算法的效率? 一般来说,编程就是把各种已知的算法代入到自己的代码当中,以此来解决问题.因此,了解各种算法的效率对于我们选择一个合适的算法有很大帮助. 算法的效率由什么确定? 从算法分析的理 ...
- 【XSY1529】小Q与进位制 分治 FFT
题目大意 小Q发明了一种进位制,每一位的变化范围是\(0\)~\(b_i-1\),给你一个这种进位制下的整数\(a\),问你有多少非负整数小于\(a\).结果以十进制表示. \(n\leq 1 ...
- 前后端分离之vue2.0+webpack2 实战项目 -- html模板拼接
对于前后端分离,如何把一个页面的公共部分比如head, header, footer, content等组合成一个完整的html 是一个值得考虑的地方. 对于php,我们可以利用include加载其他 ...